
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

P256Verifier

Veridise Inc.
October 6, 2023

I Prepared For:

Daimo
https://daimo.xyz/

I Prepared By:

Daniel Domínguez Álvarez
Jacob Van Geffen
Bryan Tan

I Contact Us: contact@veridise.com

I Version History:

Oct. 6, 2023 V1.01 - fix typos and update status of VUL-001
Oct. 6, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://daimo.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-P256-VUL-001: Missing check to prevent signature malleability 8
4.1.2 V-P256-VUL-002: Valid public keys of the form (0, y) are rejected 9
4.1.3 V-P256-VUL-003: Potential clarity improvements in P256Verifier 10
4.1.4 V-P256-VUL-004: Undocumented behavior of modInv when called with

u=0 . 11

Veridise Audit Report: P256Verifier © 2023 Veridise Inc.

Executive Summary 1
From Sep. 13, 2023 to Sep. 26, 2023, Daimo engaged Veridise to review the security of their
P256Verifier project, a Solidity smart contract implementation of ECDSA signature verification
for the NIST P-256 curve (also known as secp256r1). The smart contract is designed to be a
drop-in replacement for the precompiled contract proposed in EIP-7212. Veridise conducted
the assessment over 6 person-weeks, with 3 engineers reviewing code over 2 weeks on commit
4887c97. The security assessment was performed in the same audit as that of the Daimo project*.
The auditing strategy involved a tool-assisted analysis of the source code performed by Veridise
engineers as well as extensive manual auditing.

Code assessment. The P256Verifier developers provided the source code of P256Verifier for
review†. The source code appears to be influenced by other ECDSA implementations such as
FreshCryptoLib and blst but otherwise seems to be mostly written by the developers. The source
code contained some documentation in the form of READMEs and documentation comments
on functions. The source code also contained a test suite, which the Veridise auditors noted
checks the output of the P256Verifier on the secp256r1 test vectors of the wycheproof project.

Summary of issues detected. The audit uncovered 4 issues, consisting of 1 low-severity issue,
1 warning, and 2 informational issues. The low-severity issue involves a missing check for
signature malleability (V-P256-VUL-001), the warning identifies a case where two valid public
keys may be falsely rejected (V-P256-VUL-002), and the informational issues document parts of
the code that the auditors found confusing to read (V-P256-VUL-003, V-P256-VUL-004). The
P256Verifier developers resolved all of the reported issues.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

* The audit report for Daimo can be found on our website: https://veridise.com/audits
† The source code is publicly available at https://github.com/daimo-eth/p256-verifier

Veridise Audit Report: P256Verifier © 2023 Veridise Inc.

https://eips.ethereum.org/EIPS/eip-7212
https://github.com/rdubois-crypto/FreshCryptoLib
https://github.com/supranational/blst
https://github.com/google/wycheproof
https://veridise.com/audits
https://github.com/daimo-eth/p256-verifier

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
P256Verifier 4887c97 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Sep. 13 - Sep. 26, 2023 Manual & Tools 3 6 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 0 0
Low-Severity Issues 1 1
Warning-Severity Issues 1 1
Informational-Severity Issues 2 2
TOTAL 4 4

Table 2.4: Category Breakdown.

Name Number
Data Validation 2
Logic Error 1
Maintainability 1

Veridise Audit Report: P256Verifier © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the P256Verifier smart contract.
In our audit, we sought to answer questions such as:

I Does the smart contract correctly validate a given ECDSA public key?
I Does the behavior of the implementation match the behavior described in EIP-7212?
I Are there any unstated assumptions that are not clearly documented?
I Are the curve parameters correctly set in the code?
I Is the Strauss-Shamir trick correctly implemented?
I Are elliptic curve operations such as point addition, scalar multiplication, etc. always

given valid points on the curve?
I Do the point operations correctly handle cases such as infinity, same point, additive

inverse, etc.?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

I Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. Tools such as this are designed to find instances of
common smart contract vulnerabilities, such as reentrancy and uninitialized variables.

Scope. The scope of this audit is limited to the P256Verifier.sol file of the source code provided
by the P256Verifier developers.

Methodology. The Veridise auditors reviewed relevant specifications such as EIP-7212, inspected
the provided tests, and read the P256Verifier documentation. They then began a manual audit
of the code assisted by static analysis.

References. During the audit, the Veridise auditors compared the implementation to the proce-
dures described in the following documents:

I Standards for Efficient Cryptography 1 (SEC 1), Ver. 2.0. https://www.secg.org/sec1-v2.

pdf

I National Institute of Standards and Technology (2023) Digital Signature Standard (DSS).
(Department of Commerce, Washington, D.C.), Federal Information Processing Standards
Publication (FIPS) NIST FIPS 186-5. https://doi.org/10.6028/NIST.FIPS.186-5

Veridise Audit Report: P256Verifier © 2023 Veridise Inc.

https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf
https://doi.org/10.6028/NIST.FIPS.186-5

6 3 Audit Goals and Scope

I Chen L, Moody D, Regenscheid A, Robinson A, Randall K (2023) Recommendations for
Discrete Logarithm-based Cryptography: Elliptic Curve Domain Parameters. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
NIST SP 800-186. https://doi.org/10.6028/NIST.SP.800-186

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: P256Verifier

https://doi.org/10.6028/NIST.SP.800-186

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-P256-VUL-001 Missing check to prevent signature malleability Low Intended Behavior
V-P256-VUL-002 Valid public keys of the form (0, y) are rejected Warning Fixed
V-P256-VUL-003 Potential clarity improvements in P256Verifier Info Fixed
V-P256-VUL-004 Undocumented behavior of modInv when called wit. . .Info Fixed

Veridise Audit Report: P256Verifier © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-P256-VUL-001: Missing check to prevent signature malleability

Severity Low Commit 4887c97
Type Data Validation Status Intended Behavior

File(s) P256Verifier.sol

Location(s) ecdsa_verify()
Confirmed Fix At N/A

The ecdsa_verify() function is the main entry point to ECDSA signature verification imple-
mentation in P256Verifier. As part of its checks, it validates that the components of the given
signature (r, s) are both in the range [1, n - 1]. However, it does not perform any additional
validation on the s value.

Although the P256Verifier is designed to mimic the behavior of the precompiled contract
specified in EIP-7212, it does not include the following check on s:

Verify that s is equal to or less than half of the order of the subgroup to prevent
signature malleability.

Impact As noted in Appendix B.3 of SEC 1 Ver 2.0 [PDF], a valid signature (r, s) may be
transformed into another valid signature (r, -s mod n). Although this is "not regarded as a
forgery," omitting the check would allow both signatures to be used. This may affect downstream
applications that falsely assume that signatures are unique for a given message, leading to
signature malleability attacks.

Recommendation If full compliance with EIP-7212 is desired, the additional check on s should
be added. Note that this will require signers to only produce signatures satisfying s <= n / 2.

Developer Response The developers noted that the contract is designed to mimic the behavior
of the signature verification algorithm in NIST FIPS 186-5:

Good catch.

EIP-7212 is still in draft. We recommended that they remove the malleability check
to match the NIST spec exactly: https://github.com/ethereum/EIPs/pull/7676

Correspondingly, there’s no malleability check in P256Verifier.

© 2023 Veridise Inc. Veridise Audit Report: P256Verifier

https://eips.ethereum.org/EIPS/eip-7212
https://www.secg.org/sec1-v2.pdf
https://github.com/ethereum/EIPs/pull/7676

4.1 Detailed Description of Issues 9

4.1.2 V-P256-VUL-002: Valid public keys of the form (0, y) are rejected

Severity Warning Commit 4887c97
Type Logic Error Status Fixed

File(s) P256Verifier.sol

Location(s) ecAff_isOnCurve()
Confirmed Fix At 301328c

The internal function ecAff_isOnCurve() is used to validate whether a public key, given in
affine coordinates (x, y), is a valid point on curve P-256. The function validates that all of the
following are true:

1. x and y are both nonzero.
2. x and y are both strictly less than p.

Compared to the "Elliptic Curve Public Key Validation Primitive" procedure described in SEC 1
Ver. 2.0 [PDF], Section 3.2.2.1, the check (1) is slightly too strict and may reject valid public keys
with the form (0, y) for nonzero y. For curve P-256, there exist two valid points with a zero x

and a nonzero y.

1 /**
2 * @dev Check if a point in affine coordinates is on the curve
3 * Reject 0 point at infinity.
4 */
5 function ecAff_isOnCurve(
6 uint256 x,
7 uint256 y
8) internal pure returns (bool) {
9 if (0 == x || x >= p || 0 == y || y >= p) {

10 return false;
11 }

Snippet 4.1: Relevant lines in ecAff_isOnCurve()

Impact The two valid public keys of the form (0, y) with nonzero y may be falsely rejected
by the P256Verifier:

I y = 69528327468847610065686496900697922508397251637412376320436699849860351814667
I y = 46263761741508638697010950048709651021688891777877937875096931459006746039284

However, given the large number of points on curve P-256, it is highly unlikely for someone to
generate a keypair for which the public key is exactly one of these two points.

Recommendation Change the 0 == x || 0 == y clauses to instead compare the point with
infinity (the fake point (0, 0) in the implementation).

Developer Response The developers noted:

Great catch, thank you. I don’t think it impacts Daimo, but it is necessary for our goal
of having P256Verifier match the NIST spec (and EIP-7212) exactly. We’ll update the
check as recommended.

Veridise Audit Report: P256Verifier © 2023 Veridise Inc.

https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf

10 4 Vulnerability Report

4.1.3 V-P256-VUL-003: Potential clarity improvements in P256Verifier

Severity Info Commit 4887c97
Type Maintainability Status Fixed

File(s) P256Verifier.sol

Location(s) See description
Confirmed Fix At 402e7b4

There are several places in the P256Verifier source code where the clarity of the code could be
improved:

I The ecAff_isOnCurve() function implements a procedure to validate a public key, similar
to the one described in Section 3.2.2.1 of SEC 1 Ver. 2.0 [PDF]. Since this is only called to
validate the public key, we recommend renaming this to ecAff_validatePublicKey().

I ecAff_isOnCurve() does not include a check that the public key is in the same subgroup
as the base point of the curve. For curve P-256, this check can be safely omitted as the
property is implied by (1) the order of the base point being equal to the order of the
curve; and (2) the check that the public key is a valid point contained in the curve. We
recommend adding a comment documenting this fact.

I The ecAff_isZero() function is only used in the function ecAff_add, where it checks
whether the given point is infinity. We recommend renaming the function to ecAff_isInfinity

(). Secondly, the documentation comment of ecAff_isZero() states "Check if the curve is
the zero curve in affine rep". This comment does not seem to use standard terminology;
we recommend changing the comment to "Check if the given point is infinity in affine
rep".

I ecAff_isZero() returns true if and only if y == 0. Because infinity is defined as the point
(0, 0), it would seem more proper to define the function as returning true if and only if
x == 0 && y == 0. However, since curve P-256 does not contain any points of the form
(x, 0) for nonzero x, the predicate y == 0 would imply that the point is infinity (assuming
that the point is contained in the curve). We recommend documenting this fact in a
comment.

I Several functions such as ecZZ_SetAff() and ecZZ_dadd_affine() will compare a given
point in XYZZ coordinates against infinity by checking whether zz == 0 && zzz == 0. To
improve code readability, we recommend moving this check into a ecZZ_isInfinity()

function.
I To check whether the point in affine coordinates is infinity, the ecZZ_dadd_affine()

function will check y2 == 0. To improve readability, we recommend replacing this check
with ecAff_isZero().

© 2023 Veridise Inc. Veridise Audit Report: P256Verifier

https://www.secg.org/sec1-v2.pdf

4.1 Detailed Description of Issues 11

4.1.4 V-P256-VUL-004: Undocumented behavior of modInv when called with u=0

Severity Info Commit 4887c97
Type Data Validation Status Fixed

File(s) P256Verifier.sol

Location(s) modInv()
Confirmed Fix At ecf94ce

The modInv() function computes the integer 𝑢−1 mod 𝑓 (where 𝑓 is a prime number). This
is computed by calling the modexp precompiled contract. When u is 0, the modInv() function
returns 0. However, the multiplicative inverse of 0 is not defined for integers modulo f. For
clarity, we recommend documenting this deviation from the mathematical definition of the
multiplicative inverse.

1 function modInv(uint256 u, uint256 f, uint256 minus_2modf) internal view returns (
uint256 result, bool success) {

2 bytes memory ret;
3 (success, ret) = (address(0x05).staticcall(abi.encode(32, 32, 32, u, minus_2modf,

f)));
4 result = abi.decode(ret, (uint256));
5 }

Snippet 4.2: Implementation of modInv()

Note that the only location where 0 can be supplied to the u argument of modInv() is in
eeZZ_mulmuladd_S_asm(). However, this can only occur if the final result of the point addition is
the point infinity, in which case X will correctly be set to 0.

1 uint256 zzInv;
2 (zzInv, success) = pModInv(zz);
3 X = mulmod(X, zzInv, p); // X/zz

Snippet 4.3: Relevant lines in eeZZ_mulmuladd_S_asm(). zz can be zero here. Note that pModInv

is implemented as modInv(zz, p, p-2).

Recommendation Add comments clarifying this behavior.

Veridise Audit Report: P256Verifier © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-P256-VUL-001: Missing check to prevent signature malleability
	V-P256-VUL-002: Valid public keys of the form (0, y) are rejected
	V-P256-VUL-003: Potential clarity improvements in P256Verifier
	V-P256-VUL-004: Undocumented behavior of modInv when called with u=0

