
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Atem Token

Veridise Inc.
October 31, 2023

▶ Prepared For:

Atem Network
https://www.atem.io/

▶ Prepared By:

Jon Stephens

▶ Contact Us: contact@veridise.com

▶ Version History:

Oct. 30, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://www.atem.io/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5
3.4 Detailed Description of Issues . 8

3.4.1 V-ATN-VUL-001: Mulit-Chain Replay Attack 8
3.4.2 V-ATN-VUL-002: Emit in State-Modifying Functions 10
3.4.3 V-ATN-VUL-003: TokenVesting Contract Locks Native Tokens 11
3.4.4 V-ATN-VUL-004: TokenVesting Contract Accepts All Calls 12
3.4.5 V-ATN-VUL-005: No Validation of Merkle Tree Height 13
3.4.6 V-ATN-VUL-006: No Admin Validation 14
3.4.7 V-ATN-VUL-007: Centralization Risk . 16
3.4.8 V-ATN-VUL-008: No Validation that a VestingScheduleId isn’t in Use . . 17
3.4.9 V-ATN-VUL-009: Non-Standard Vesting Cliff 18
3.4.10 V-ATN-VUL-010: Code Duplication in TokenVesting and AtemToken . . 19
3.4.11 V-ATN-VUL-011: Unnecessary Code . 21

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

Executive Summary 1
On October 30, 2023, Atem Network engaged Veridise to review the security of their Atem
Token. The review covered the Solidity source code of the token implementation and a vesting
contract that will distribute tokens to a user over time. Veridise conducted the assessment over
1 person-day, with 1 engineers reviewing code over 1 day on the version of the code which
we will label V1. After the audit, the fixed version of the code was uploaded to Github and
has commit 3ca4e22. The auditing strategy involved a tool-assisted analysis of the source code
performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The Atem Token developers provided the source code of the Atem Token
contracts for review. The AtemToken inherits the core ERC20 functionality from the OpenZep-
pelin 4.7.3 ERC20Burnable contract. As a result, they have inherited several safety features
such as the increaseAllowance and decreaseAllowance functions which avoid the potential
front-running issues associated with approve. In addition to the core ERC20 functionality,
the AtemToken allows users to claim airdrops if they either have an approved signature or
a merkle tree proof. Once tokens are claimed, a percentage of them may require vesting via
the TokenVesting contract. As the name implies, the TokenVesting contract will vest tokens
over time. In the version of the contract that was audited, this contract will increase tokens
linearly over the duraiton of the vesting period once the cliff has been reached. No external
documentation or tests were provided.

Summary of issues detected. The audit uncovered 11 issues, 2 of which are assessed to be of
medium severity by the Veridise auditors. Specifically, V-ATN-VUL-001 identifies the possibility
for signatures to be replayed on other chains to gain additional funds and V-ATN-VUL-002
identifies a lack of event emits which will make tracking important protocol events difficult. The
Veridise auditors also identified several low-severity issues, including the potential for locked
funds, a lack of validation on the administrator, and risks associated with centralization.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Atem Token V1 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
October 30, 2023 Manual & Tools 1 1 person-day

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 2 2
Low-Severity Issues 5 5
Warning-Severity Issues 3 3
Informational-Severity Issues 1 1
TOTAL 11 11

Table 2.4: Category Breakdown.

Name Number
Data Validation 3
Logic Error 2
Maintainability 2
Replay Attack 1
Best Practices 1
Locked Funds 1
Centralization 1

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the AtemToken and the
TokenVesting contracts. In our audit, we sought to answer the following questions:

▶ Can the contract be manipulated such that tokens can be stolen from users?
▶ Can a user manipulate tokens that are owned by another user?
▶ Are there risks associated with centralization?
▶ Are any minting functions properly guarded by access controls?
▶ Does the token adhere to the behaviors defined in the ERC20 specification?
▶ Can a user claim more tokens than the specified maximum?
▶ Can funds be locked in the TokenVesting contract?
▶ Does the TokenVesting contract properly vest tokens over time?
▶ Can a user retrieve their funds early from the TokenVesting contract?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. These tools are designed to find instances of
common smart contract vulnerabilities, such as reentrancies and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The scope of the audit was limited to AtemToken_flatten.sol, which contained the
source code of the AtemToken and the TokenVesting contract and the OpenZeppelin 4.7.3
dependencies.

Methodology. Veridise auditors performed a manual audit of the code assisted by both static
analyzers and automated testing.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

6 3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Atem Token

3.3 Classification of Vulnerabilities 7

Table 3.4: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-ATN-VUL-001 Mulit-Chain Replay Attack Medium Fixed
V-ATN-VUL-002 Emit in State-Modifying Functions Medium Fixed
V-ATN-VUL-003 TokenVesting Contract Locks Native Tokens Low Fixed
V-ATN-VUL-004 TokenVesting Contract Accepts All Calls Low Fixed
V-ATN-VUL-005 No Validation of Merkle Tree Height Low Fixed
V-ATN-VUL-006 No Admin Validation Low Fixed
V-ATN-VUL-007 Centralization Risk Low Acknowledged
V-ATN-VUL-008 No Validation that a VestingScheduleId isn’t in. . . Warning Acknowledged
V-ATN-VUL-009 Non-Standard Vesting Cliff Warning Fixed
V-ATN-VUL-010 Code Duplication in TokenVesting and AtemToken Warning Fixed
V-ATN-VUL-011 Unnecessary Code Info Fixed

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

8 3 Audit Goals and Scope

3.4 Detailed Description of Issues

3.4.1 V-ATN-VUL-001: Mulit-Chain Replay Attack

Severity Medium Commit V1

Type Replay Attack Status Fixed
File(s) AtemToken_flatten.sol

Location(s) claimWithSignature
Confirmed Fix At 3ca4e22

It is currently common practice to deploy contracts on multiple EVM-compatible chains while
maintaining the same addresses on each as it simplifies the management of the multi-chain
protocol and provides a smoother user-experience. In the case of AtemToken, however, doing
so can provide an opportunity for attackers due to how they construct their signature hashes.

When a user submits a claim request with a signature the sender, maximum claim and user
type are all hashed as shown below.

1 function claimWithSignature(
2 uint256 amount,
3 uint256 max_amount,
4 uint256 user_type,
5 bytes memory signature_

6) external nonReentrant() {
7 address account = _msgSender();
8

9 require(
10 _verifySig(
11 keccak256(abi.encodePacked(account, max_amount, user_type)),
12 signature_,
13 _platformAuthorizeAccount),
14 ’AtemToken#claimWithSignature: invalid signature of platform authorizer’
15);
16 ...
17 }

Figure 3.1: The location in claimWithSignature where the initial hash is computed

This is provided to the _verify function which uses OpenZeppelin’s ECDSA library to con-
struct Ethereum signed message and then to validate that the message was signed by the
_platformAuthorizedAccount.

Since an Ethereum signed message does not contain a chainid, if AtemToken is deployed on
multiple blockchains and _platformAuthorizedAccount is maintained, then such signatures can
be replayed across chains.

Impact While it appears that signatures are intended to be replayed on a single chain as the
signature restricts a user’s cumulative claim amount, replaying across chains would effectively
allow a user to claim more than the specified max amount.

© 2023 Veridise Inc. Veridise Audit Report: Atem Token

3.4 Detailed Description of Issues 9

1 function _verifySig(bytes32 data, bytes memory signature, address account) internal
pure returns (bool)

2 {
3 return signatureRecover(data, signature) == account;
4 }
5

6 function signatureRecover(bytes32 data, bytes memory signature) public pure returns (
address) {

7 return data
8 .toEthSignedMessageHash()
9 .recover(signature);

10 }

Figure 3.2: The location in AtemToken where signatures are verified

Recommendation Rather than an Ethereum signed message, consider using EIP712 instead,
particularly with a domainSeparator that includes the chainid.

Developer Response We would like to use EIP712, but we do not have time for the front- and
back-end to coordinate.

Auditor Response This issue was fixed by adding a chainid that is initialized by an argument
in the constructor into the signature hash. With this solution, it is very important that different
chainids are used on different chains. The client has been warned of this and they confirmed
that they will do so.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

https://eips.ethereum.org/EIPS/eip-712

10 3 Audit Goals and Scope

3.4.2 V-ATN-VUL-002: Emit in State-Modifying Functions

Severity Medium Commit V1

Type Best Practices Status Fixed
File(s) AtemToken_flatten.sol

Location(s) AtemToken, TokenVesting
Confirmed Fix At 3ca4e22

It is considered best practice to emit an event whenever non-trivial storage modifications are
made to a contract. In both the AtemToken and TokenVesting contracts, however, no events are
declared or emitted beside those in the OpenZeppelin library.

1 function setPlatformAuthorizeAccount(address addr) external onlyRole(MINTER_ROLE)
2 {
3 _platformAuthorizeAccount = addr;
4 }

Figure 3.3: Example of an important admin function that does not emit

Impact It is important to emit such events because it (1) makes monitoring the contract for
anomalies easier for admins and (2) allows users to monitor the contract for relevant updates
(such as vesting schedule changes or revoked vesting).

Recommendation On consequential storage modifications, emit an event with relevant
information to provide users and admins with relevant information.

© 2023 Veridise Inc. Veridise Audit Report: Atem Token

3.4 Detailed Description of Issues 11

3.4.3 V-ATN-VUL-003: TokenVesting Contract Locks Native Tokens

Severity Low Commit V1

Type Locked Funds Status Fixed
File(s) AtemToken_flatten.sol

Location(s) receive, fallback
Confirmed Fix At 3ca4e22

The solidity language allows developers to define a receive function so that they may accept
native tokens and perform necessary book keeping. The TokenVesting contract defines an empty
receive function, but does not provide any other functionality to interact with native tokens.

1 /**
2 * @dev This function is called for plain Ether transfers, i.e. for every call with

empty calldata.
3 */
4 receive() external payable {}

Figure 3.4: The receive function defined in TokenVesting

Impact Since a receive function is defined, all native token transfers will be accepted. Since
the contract cannot do anything with native tokens though (including rescue them), they will
be locked in the contract.

Recommendation Delete the receive function and payable fallback function so that native
tokens are rejected.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

12 3 Audit Goals and Scope

3.4.4 V-ATN-VUL-004: TokenVesting Contract Accepts All Calls

Severity Low Commit V1

Type Logic Error Status Fixed
File(s) AtemToken_flatten.sol

Location(s) fallback
Confirmed Fix At 3ca4e22

The solidity language allows developers to define a fallback function which will be executed
when no functions with a given selector match a request. The TokenVesting contract defines an
empty fallback function which will silently accept any function call outside of those defined by
the contract.

1 /**
2 * @dev Fallback function is executed if none of the other functions match the

function
3 * identifier or no data was provided with the function call.
4 */
5 fallback() external payable {}

Figure 3.5: The fallback function defined in TokenVesting

Impact The contract will accept any call outside of those defined by the contract, giving the
impression that the given function executed as intended. As an example, consider if a user
confused the TokenVesting address for the AtemToken address. If the transfer function were
called, on TokenVesting, it would appear that the transfer was successful since it did not revert
(additionally it would be accepted by many SafeERC20 libraries).

Recommendation Delete the empty fallback function so that function calls outside of those
defined within the contract revert.

© 2023 Veridise Inc. Veridise Audit Report: Atem Token

3.4 Detailed Description of Issues 13

3.4.5 V-ATN-VUL-005: No Validation of Merkle Tree Height

Severity Low Commit V1

Type Data Validation Status Fixed
File(s) AtemToken_flatten.sol

Location(s) claimWithProof
Confirmed Fix At 3ca4e22

The method claimWithProof allows a user to provide proof of their membership in a merkle
tree to claim funds. During the process of verifying the proof, no validation is performed to
check that the proof size matches the expected size of the tree. As an example, claimWithProof
would accept an empty proof if the provided leaf hashed to the tree root.

1 function _verify(bytes32 leaf, bytes32[] memory proof)
2 internal view returns (bool)
3 {
4 return MerkleProof.verify(proof, whitelistRoot, leaf);
5 }

Figure 3.6: Location where a merkle tree proof is validated.

Impact This increases the likelihood of collision-based attacks such as second-preimage,
dictionary and birthday attacks.

Recommendation Validate the size of the tree when verifying the proof.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

14 3 Audit Goals and Scope

3.4.6 V-ATN-VUL-006: No Admin Validation

Severity Low Commit V1

Type Data Validation Status Fixed
File(s) AtemToken_flatten.sol

Location(s) setPlatformAuthorizeAccount, addVestingSchedule, ...
Confirmed Fix At 3ca4e22

Many of the admin functions in the AtemToken contract do not validate the inputs provided
by the administrator. While it is common for an admin to be a trusted entity, administrator
mistakes have led to significant problems in the past. As an example, the new schedules are
not validated in addVestingSchedule and modifyVestingSchedule. In most cases, this will cause
claim attempts to revert, such as if duration is 0.

1 function addVestingSchedule(
2 uint256 tgeRatio,
3 uint256 cliff,
4 uint256 start,
5 uint256 duration,
6 uint256 slicePeriodSeconds,
7 bool revocable
8) external onlyRole(MINTER_ROLE) {
9 vestingSchedules.push(VestingScheduleParams({

10 tgeRatio: tgeRatio,
11 cliff: cliff,
12 start: start,
13 duration: duration,
14 slicePeriodSeconds: slicePeriodSeconds,
15 revocable: revocable
16 }));
17 }
18

19 function modifyVestingSchedule(
20 uint256 index,
21 uint256 tgeRatio,
22 uint256 cliff,
23 uint256 start,
24 uint256 duration,
25 uint256 slicePeriodSeconds,
26 bool revocable
27) external onlyRole(MINTER_ROLE) {
28 require(index < vestingSchedules.length, "AtemToken#modifyVestingSchedule:

invalid index");
29 vestingSchedules[index].tgeRatio = tgeRatio;
30 vestingSchedules[index].cliff = cliff;
31 vestingSchedules[index].start = start;
32 vestingSchedules[index].duration = duration;
33 vestingSchedules[index].slicePeriodSeconds = slicePeriodSeconds;
34 vestingSchedules[index].revocable = revocable;
35 }

Figure 3.7: The definitions of addVestingSchedule and modifyVestingSchedule

© 2023 Veridise Inc. Veridise Audit Report: Atem Token

3.4 Detailed Description of Issues 15

Impact In the cases above, the lack of validation could break functionality in the contract.

Recommendation Validate inputs from admins to prevent potential mistakes.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

16 3 Audit Goals and Scope

3.4.7 V-ATN-VUL-007: Centralization Risk

Severity Low Commit V1

Type Centralization Status Acknowledged
File(s) AtemToken_flatten.sol

Location(s) N/A
Confirmed Fix At

Similar to many projects, the AtemToken declares an admin that is given special privileges. In
particular, the owner can mint funds, change signing account, change the merkle tree root,
add and modify vesting schedules, change the vesting contract, and revoke vesting funds. As
these are all particularly sensitive operations, we would encourage the developers to utilize a
decentralized governance or multi-sig contract as an EOA introduces a single point of failure.

Impact If a private key were stolen, a hacker would have access to sensitive functionality that
could compromise the project. For example, a malicious owner could mint a large number of
tokens for themselves, then sell them for a profit, potentially flooding the market.

Recommendation Utilize a decentralized governance or multi-sig contract as the owner of the
AtemToken.

© 2023 Veridise Inc. Veridise Audit Report: Atem Token

3.4 Detailed Description of Issues 17

3.4.8 V-ATN-VUL-008: No Validation that a VestingScheduleId isn’t in Use

Severity Warning Commit V1

Type Data Validation Status Acknowledged
File(s) AtemToken_flatten.sol

Location(s) createVestingSchedule
Confirmed Fix At

When a new vesting schedule is created, it is associated with an ID as shown below. The vesting
schedule ID is defined to be the hash of the beneficiary and next index to be used in the user’s
list of vesting schedules. Once the ID is computed, it is then used to store the new vesting
schedule without checking to see if the indicated storage slot has already been allocated.

1 function createVestingSchedule(
2 ...
3) external onlyOwner {
4 ...
5

6 bytes32 vestingScheduleId = computeNextVestingScheduleIdForHolder(
7 _beneficiary
8);
9 uint256 cliff = _start + _cliff;

10 vestingSchedules[vestingScheduleId] = VestingSchedule(
11 true,
12 _beneficiary,
13 cliff,
14 _start,
15 _duration,
16 _slicePeriodSeconds,
17 _revocable,
18 _amount,
19 0,
20 false
21);
22

23 ...
24 }

Figure 3.8: Location in createVestingSchedule where the vesting schedule ID is computed

Impact While collisions are very unlikely, if one were to occur funds would be locked in the
contract.

Recommendation Consider requiring that vestingSchedules[vestingScheduleId] is not ini-
tialized.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

18 3 Audit Goals and Scope

3.4.9 V-ATN-VUL-009: Non-Standard Vesting Cliff

Severity Warning Commit V1

Type Logic Error Status Fixed
File(s) AtemToken_flatten.sol

Location(s) _computeVestedAmount, _computeReleasableAmount
Confirmed Fix At 3ca4e22

In the context of vesting, a cliff is typically defined to be a point in time before which nothing is
vested and after which all tokens or shares from the start of the vesting period to the cliff are
vested at once. In the TokenVesting contract, a cliff is essentially defined to be the start of the
vesting period. As shown below, once the cliff is reached the amount of tokens vested is 0 since
timeFromCliffEnd is zero and so vestedSeconds is 0. Afterwards, the amount of tokens vested
increases linearly until the vesting duration. As a result, the cliff in this case is essentially just
the start of the vesting period.

1 function _computeVestedAmount(
2 VestingSchedule memory vestingSchedule
3) internal view returns (uint256) {
4 ...
5

6 // Otherwise, some tokens are releasable.
7 else {
8 // Compute the number of full vesting periods that have elapsed.
9 // uint256 timeFromStart = currentTime - vestingSchedule.start;

10 uint256 duration_deduct_cliff = vestingSchedule.duration + vestingSchedule.
start - vestingSchedule.cliff ;

11 uint256 timeFromCliffEnd = currentTime - vestingSchedule.cliff;
12 uint256 secondsPerSlice = vestingSchedule.slicePeriodSeconds;
13 uint256 vestedSlicePeriods = timeFromCliffEnd / secondsPerSlice;
14 uint256 vestedSeconds = vestedSlicePeriods * secondsPerSlice;
15 // Compute the amount of tokens that are vested.
16 uint256 vestedAmount = (vestingSchedule.amountTotal *
17 vestedSeconds) / duration_deduct_cliff;
18 // Subtract the amount already released and return.
19 return vestedAmount;
20 }
21 }

Figure 3.9: The snippet of _computeVestedAmount that computes the amount of vested funds

Impact Given that cliff is not typically defined in this way, it could cause confusion with
users. Additionally, since the cliff in this case is essentially the start of the vesting period, this is
actually complicating the logic since the cliff is included in the duration.

Recommendation Consider either removing the cliff to simplify the logic while maintaining
the same functionality or changing the cliff to be in line with the typical definition.

© 2023 Veridise Inc. Veridise Audit Report: Atem Token

3.4 Detailed Description of Issues 19

3.4.10 V-ATN-VUL-010: Code Duplication in TokenVesting and AtemToken

Severity Warning Commit V1

Type Maintainability Status Fixed
File(s) AtemToken_flatten.sol

Location(s) _computeReleasableAmount, _computeVestedAmount
Confirmed Fix At 3ca4e22

Two functions in the TokenVesting contract define very similar behavior that looks to have been
copied and pasted from one location to another.

As an example, consider the _computeReleasableAmount function shown below:

1 function _computeReleasableAmount(
2 VestingSchedule memory vestingSchedule
3) internal view returns (uint256) {
4 // Retrieve the current time.
5 uint256 currentTime = getCurrentTime();
6 // If the current time is before the cliff, no tokens are releasable.
7 if ((currentTime < vestingSchedule.cliff) || vestingSchedule.revoked) {
8 return 0;
9 }

10 // If the current time is after the vesting period, all tokens are releasable,
11 // minus the amount already released.
12 else if (
13 currentTime >= vestingSchedule.start + vestingSchedule.duration
14) {
15 return vestingSchedule.amountTotal - vestingSchedule.released;
16 }
17 // Otherwise, some tokens are releasable.
18 else {
19 // Compute the number of full vesting periods that have elapsed.
20 // uint256 timeFromStart = currentTime - vestingSchedule.start;
21 uint256 duration_deduct_cliff = vestingSchedule.duration + vestingSchedule.

start - vestingSchedule.cliff ;
22 uint256 timeFromCliffEnd = currentTime - vestingSchedule.cliff;
23 uint256 secondsPerSlice = vestingSchedule.slicePeriodSeconds;
24 uint256 vestedSlicePeriods = timeFromCliffEnd / secondsPerSlice;
25 uint256 vestedSeconds = vestedSlicePeriods * secondsPerSlice;
26 // Compute the amount of tokens that are vested.
27 uint256 vestedAmount = (vestingSchedule.amountTotal *
28 vestedSeconds) / duration_deduct_cliff;
29 // Subtract the amount already released and return.
30 return vestedAmount - vestingSchedule.released;
31 }
32 }

Figure 3.10: Current definition of the _computeReleasableAmount function

It could instead be defined as shown in Figure 3.11 since the definition of _computeVestedAmount
is exactly the same except it doesn’t subtract vestingSchedule.released before returning.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

20 3 Audit Goals and Scope

1 function _computeReleasableAmount(
2 VestingSchedule memory vestingSchedule
3) internal view returns (uint256) {
4 uint256 vested = _computeVestedAmount(vestingSchedule);
5 // Note: when vested == 0, then released == 0 as well
6 return vested - vestingSchedule.released;
7 }

Figure 3.11: Simplified definition of _computeReleasableAmount

Impact Code duplication can result in maintenance issues in the future since if one location is
modified usually all other instances of the same code need to be modified as well. If the code is
not modified correctly, then errors are likely to appear.

Recommendation In cases where code is copied, try to reuse the code rather than copy it.

© 2023 Veridise Inc. Veridise Audit Report: Atem Token

3.4 Detailed Description of Issues 21

3.4.11 V-ATN-VUL-011: Unnecessary Code

Severity Info Commit V1

Type Maintainability Status Fixed
File(s) AtemToken_flatten.sol

Location(s) release, releaseAll
Confirmed Fix At 3ca4e22

In the TokenVesting contract, the address of the beneficiary is cast to a payable address before the
transfer. However, an address only needs to be payable if sending native tokens to the recipient,
not when sending ERC20 tokens. As a result, the code is unnecessary as the non-payable address
can be used.

1 function release(
2 bytes32 vestingScheduleId,
3 uint256 amount
4) public nonReentrant onlyIfVestingScheduleNotRevoked(vestingScheduleId) {
5 ...
6

7 address payable beneficiaryPayable = payable(
8 vestingSchedule.beneficiary
9);

10 vestingSchedulesTotalAmount = vestingSchedulesTotalAmount - amount;
11 _token.safeTransfer(beneficiaryPayable, amount);
12 }

Figure 3.12: Location in the release function where an address is unnecessarily cast to payable

Recommendation Remove the cast to payable and just use the non-payable address.

Veridise Audit Report: Atem Token © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Detailed Description of Issues

	Detailed Description of Issues
	V-ATN-VUL-001: Mulit-Chain Replay Attack
	V-ATN-VUL-002: Emit in State-Modifying Functions
	V-ATN-VUL-003: TokenVesting Contract Locks Native Tokens
	V-ATN-VUL-004: TokenVesting Contract Accepts All Calls
	V-ATN-VUL-005: No Validation of Merkle Tree Height
	V-ATN-VUL-006: No Admin Validation
	V-ATN-VUL-007: Centralization Risk
	V-ATN-VUL-008: No Validation that a VestingScheduleId isn’t in Use
	V-ATN-VUL-009: Non-Standard Vesting Cliff
	V-ATN-VUL-010: Code Duplication in TokenVesting and AtemToken
	V-ATN-VUL-011: Unnecessary Code

