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• First and foremost a big welcome!


• Thank you for attending Veridise’s ZK-focused Secureum Workshop


• Congratulations to the winners of RACE-23


• We have an exciting week planned for you


• Daily lectures from Veridise about ZK technology and our tooling


• Guest lectures by industry leaders
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• Veridise is a blockchain security company

• Founded by a team of world-class researchers


• Our obsessions: 1. reasoning about code 2. creating tools that help 
us find bugs or prove properties about code

Our team
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• We performed audits for many ecosystems (e.g., Ethereum, NEAR, StarkWare) and for 
different kinds of use cases (e.g., AMMs, stablecoins, auctions, etc.)

Leader in auditing ZKP Circuits Trusted by leading projects 

Our audits
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We are developing state-of-the-art automated security tooling

SaaS Platform

We will dive into two zk-related tools this week:

   1. zk-Vanguard 2. Picus



Workshop Logistics
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Our discord

Few things before we begin!

• Each will have a Veridise lecture followed by a guest lecture

• This will be followed by a quiz for RACE-23 winners  

Schedule
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• We will use zk-secureum-private for general communication (e.g., quiz announcements)


• Any non answer-revealing question can be sent on zk-secureum-private.

• For general-interest questions use zk-secureum-public (open to all) 

• If you are unsure about sending a message publicly, send it to your personal support 
channel (you’ll be added by us)


• Discussing quiz answers on the public channel is not allowed! 

• Quizzes deadlines are listed in the official schedule.


• The registration on SaaS must be done with the same e-mail address you provided Rajeev 
with.


• You’ll receive an e-mail (if you haven’t already) with a unique user ID. Don’t share the user 
ID with anyone (except us)!



Prizes
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Top-performers will also be 
considered for an auditing 

position at Veridise :)

1st

3rd
2nd

5th
4th

2k USDC

1k USDC

500 USDC



Let’s Cut to the Chase

9

An Introduction to 

ZK Languages and Frameworks
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• Some important properties 

• The prover doesn’t reveal the secret


• The verifier can always detect false proofs
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Several Categories of Protocols and 
Multiple Members per Category

Our Focus: zk-SNARKs
But what does this 

mean?
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Privacy
Scalability

• ZK proofs can significantly enhance Dapps 
• The verifier can live on the blockchain while proofs can be submitted by anyone


• But prover and verifier need to be customized on a Dapp basis


• Need for creating custom “ZK protocols” without being a cryptography 
expert



How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field 
Equations

Transform



How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field 
Equations

Transform

Over a large 
prime number



How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field 
Equations

Transform

Over a large 
prime number Crypto 

Magic



How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field 
Equations

Transform

Plonky2

gnark

DSL Rust Go

Over a large 
prime number Crypto 

Magic



How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field 
Equations

Transform

Plonky2

gnark

DSL Rust Go

Over a large 
prime number Crypto 

Magic

R1CS, Plonk, Plonkish, …



How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field 
Equations

Transform

Plonky2

gnark

DSL Rust Go

Over a large 
prime number Crypto 

Magic

R1CS, Plonk, Plonkish, …



Circom 101
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pragma circom 2.0.0; 

template Multiplier2 () {   

   // Declaration of signals.   
   signal input a;   
   signal input b; 
   signal tmp;  
   signal output c;   

   // Witness generation 
   c <-- a * b; 
    
  // Constraints. 
  c === a * b; 
  tmp === 0;  
} 

component main {public [a]} = Multiplier2(); 

• Computation in circom is encoded as circuits


• A circuit is a composition of templates


• Each template defines two things over signals


• Constraints (checked by the verifier)


• Witness generation (used to generate the 
proof)


• Attention: ALL operations are modulo a big 
prime. That is, a op b is really a op b % p


• Therefore, all signals are between 0 and p-1
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pragma circom 2.0.0; 

template Multiplier2 () {   

   // Declaration of signals.   
   signal input a;   
   signal input b; 
   signal tmp;  
   signal output c;   

   // Witness generation 
   c <-- a * b; 
    
  // Constraints. 
  c === a * b; 
  tmp === 0;  
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generation 
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affects the verifier

• Constraints must be expressible as 
A*B - C = 0, where A,B,C are linear 
expressions (at most quadratic)


• This limitation stems from R1CS

Component holds a 
template instance

Signals not in this list 
are private

Output signals must have a 
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pragma circom 2.0.0; 

template Multiplier2 () {   

   // Declaration of signals.   
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Generator

Can be used with a 
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generate/verify proofs
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generate the proof.
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template SumN(n) { 
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void AssertBinary(int in) { 

    assert(in == 0 || in == 1); 
  
} 

One of the most common mistakes is that people 
think in terms of traditional programming

template AssertBinary { 
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void AssertBinary(int in) { 

    assert(in == 0 || in == 1); 
  
} 

One of the most common mistakes is that people 
think in terms of traditional programming

template AssertBinary { 
   signal input in; 
  

}

in * (1 - in) === 0;

Can more things go wrong? 
Well, of course :) 

More on this later…
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• Even though circom seems like a small and simply language, we merely scratch 
the surface here.


• The best way to learn a language is to play with it!


• We encourage you to do that by following the circom docs


• Generate proofs, run the verifier, and generally poke around :)


• If you are one of the RACE winners, you’ll have to do so for the QUIZ


• More info on the private discord channel


• If you get stuck or have any question, just shoot a message on one of the 
discord channels (private or public)!


