
A Gentle Introduction to

Zero Knowledge Languages

Kostas Ferles
CRO, Veridise

Welcome!

2

• First and foremost a big welcome!

• Thank you for attending Veridise’s ZK-focused Secureum Workshop

• Congratulations to the winners of RACE-23

• We have an exciting week planned for you

• Daily lectures from Veridise about ZK technology and our tooling

• Guest lectures by industry leaders

About Veridise

3

• Veridise is a blockchain security company

• Founded by a team of world-class researchers

• Our obsessions: 1. reasoning about code 2. creating tools that help
us find bugs or prove properties about code

Our team

About Veridise

4

• We performed audits for many ecosystems (e.g., Ethereum, NEAR, StarkWare) and for
different kinds of use cases (e.g., AMMs, stablecoins, auctions, etc.)

Leader in auditing ZKP Circuits Trusted by leading projects

Our audits

About Veridise

5

We are developing state-of-the-art automated security tooling

SaaS Platform

We will dive into two zk-related tools this week:

 1. zk-Vanguard 2. Picus

Workshop Logistics

6

Our discord

Few things before we begin!

• Each will have a Veridise lecture followed by a guest lecture

• This will be followed by a quiz for RACE-23 winners

Schedule

Guidelines for RACE-23 Winners

7

• We will use zk-secureum-private for general communication (e.g., quiz announcements)

• Any non answer-revealing question can be sent on zk-secureum-private.

• For general-interest questions use zk-secureum-public (open to all) 

• If you are unsure about sending a message publicly, send it to your personal support
channel (you’ll be added by us)

• Discussing quiz answers on the public channel is not allowed! 

• Quizzes deadlines are listed in the official schedule.

• The registration on SaaS must be done with the same e-mail address you provided Rajeev
with.

• You’ll receive an e-mail (if you haven’t already) with a unique user ID. Don’t share the user
ID with anyone (except us)!

Prizes

8

Top-performers will also be
considered for an auditing

position at Veridise :)

1st

3rd
2nd

5th
4th

2k USDC

1k USDC

500 USDC

Let’s Cut to the Chase

9

An Introduction to

ZK Languages and Frameworks

What is a ZK protocol?

10

Prover Verifier

What is a ZK protocol?

10

Prover Verifier

I know the
secret!

What is a ZK protocol?

10

Prover Verifier

I know the
secret!

Uhm, I have
trust issues!

What is a ZK protocol?

10

Prover Verifier

Uhm, I have
trust issues!

Proof!

Huh,here
goes again!

What is a ZK protocol?

10

Prover Verifier
Proof!

Huh,here
goes again!

Fine, touche!

What is a ZK protocol?

10

Prover Verifier
Proof!

Huh,here
goes again!

Fine, touche!

• Some important properties

• The prover doesn’t reveal the secret

• The verifier can always detect false proofs

The ZK Scene is Complex

11

Several Categories of Protocols and
Multiple Members per Category

Our Focus: zk-SNARKs

The ZK Scene is Complex

11

Several Categories of Protocols and
Multiple Members per Category

Our Focus: zk-SNARKs
But what does this

mean?

Why ZK Languages or Frameworks?

12

Privacy
Scalability

• ZK proofs can significantly enhance Dapps
• The verifier can live on the blockchain while proofs can be submitted by anyone

• But prover and verifier need to be customized on a Dapp basis

• Need for creating custom “ZK protocols” without being a cryptography
expert

How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field
Equations

Transform

How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field
Equations

Transform

Over a large
prime number

How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field
Equations

Transform

Over a large
prime number Crypto

Magic

How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field
Equations

Transform

Plonky2

gnark

DSL Rust Go

Over a large
prime number Crypto

Magic

How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field
Equations

Transform

Plonky2

gnark

DSL Rust Go

Over a large
prime number Crypto

Magic

R1CS, Plonk, Plonkish, …

How they work

13

Source Code C

Proverf

Verifierf

SNARK

Polynomial Field
Equations

Transform

Plonky2

gnark

DSL Rust Go

Over a large
prime number Crypto

Magic

R1CS, Plonk, Plonkish, …

Circom 101

14

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

• Computation in circom is encoded as circuits

• A circuit is a composition of templates

• Each template defines two things over signals

• Constraints (checked by the verifier)

• Witness generation (used to generate the
proof)

• Attention: ALL operations are modulo a big
prime. That is, a op b is really a op b % p

• Therefore, all signals are between 0 and p-1

Zooming In The Circuit

15

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

Zooming In The Circuit

15

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

Signals can be either
input, output, or

intermediate

Zooming In The Circuit

15

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

Signals can be either
input, output, or

intermediate

Output signals must have a
witness assignment

Zooming In The Circuit

15

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

Signals can be either
input, output, or

intermediate

Operator <-- only
affects the witness

generation
Output signals must have a

witness assignment

Zooming In The Circuit

15

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

Signals can be either
input, output, or

intermediate

Operator <-- only
affects the witness

generation

Operator === only
affects the verifier

Output signals must have a
witness assignment

Zooming In The Circuit

15

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

Signals can be either
input, output, or

intermediate

Operator <-- only
affects the witness

generation

Operator === only
affects the verifier

• Constraints must be expressible as
A*B - C = 0, where A,B,C are linear
expressions (at most quadratic)

• This limitation stems from R1CS

Output signals must have a
witness assignment

Zooming In The Circuit

15

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

Signals can be either
input, output, or

intermediate

Operator <-- only
affects the witness

generation

Operator === only
affects the verifier

• Constraints must be expressible as
A*B - C = 0, where A,B,C are linear
expressions (at most quadratic)

• This limitation stems from R1CS

Component holds a
template instance

Output signals must have a
witness assignment

Zooming In The Circuit

15

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

Signals can be either
input, output, or

intermediate

Operator <-- only
affects the witness

generation

Operator === only
affects the verifier

• Constraints must be expressible as
A*B - C = 0, where A,B,C are linear
expressions (at most quadratic)

• This limitation stems from R1CS

Component holds a
template instance

Signals not in this list
are private

Output signals must have a
witness assignment

What to do next?

16

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

R1CS
Constraints

Witness
Generator

What to do next?

16

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

R1CS
Constraints

Witness
Generator

Can be used with a
framework like snarks to

generate/verify proofs

What to do next?

16

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

R1CS
Constraints

Witness
Generator

Can be used with a
framework like snarks to

generate/verify proofs

This doesn’t output proofs
directly. Its output is used to

generate the proof.

What to do next?

16

pragma circom 2.0.0;

template Multiplier2 () {

 // Declaration of signals.
 signal input a;
 signal input b;
 signal tmp;
 signal output c;

 // Witness generation
 c <-- a * b;

 // Constraints.
 c === a * b;
 tmp === 0;
}

component main {public [a]} = Multiplier2();

R1CS
Constraints

Witness
Generator

Can be used with a
framework like snarks to

generate/verify proofs

This doesn’t output proofs
directly. Its output is used to

generate the proof.

Detailed Instructions

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals
We can also have

local variables

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals
We can also have

local variables

And control-flow

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals
We can also have

local variables

And control-flow

Local variables can help us
build complex expressions

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals
We can also have

local variables

And control-flow

Local variables can help us
build complex expressions

This is equivalent to:
out <-- sum; out === sum;

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals
We can also have

local variables

And control-flow

Local variables can help us
build complex expressions

This is equivalent to:
out <-- sum; out === sum;

sum is equiv to in[0] + in[1] + … in[n-1]

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals
We can also have

local variables

And control-flow

Local variables can help us
build complex expressions

This is equivalent to:
out <-- sum; out === sum;

sum is equiv to in[0] + in[1] + … in[n-1]

We can also compose
templates

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals
We can also have

local variables

And control-flow

Local variables can help us
build complex expressions

This is equivalent to:
out <-- sum; out === sum;

sum is equiv to in[0] + in[1] + … in[n-1]

We can also compose
templates

We simply need to
constraint/initialize all the

inputs of the sub-component

More circom features

17

template SumN(n) {
 signal input ins[n];
 signal output out;

 var sum = 0;

 for (var i = 0; i < n; i++) { sum += ins[i]; }

 out <== sum;
}

template Foo() {
 signal input ins[5];
 component sum5 = SumN(5);

 for (var i = 0; i < 5; i++) { sum5.ins[i] <== ins[i]; }
 sum5.out === 50;
}

component main = Foo();

Templates can have
parameters We can define arrays

of signals
We can also have

local variables

And control-flow

Local variables can help us
build complex expressions

This is equivalent to:
out <-- sum; out === sum;

sum is equiv to in[0] + in[1] + … in[n-1]

We can also compose
templates

We simply need to
constraint/initialize all the

inputs of the sub-component

Then, we can also
constraint their output

Start Thinking in Circom

18

void AssertBinary(int in) {

 assert(in == 0 || in == 1);

}

One of the most common mistakes is that people
think in terms of traditional programming

template AssertBinary {
 signal input in;

}

Start Thinking in Circom

18

void AssertBinary(int in) {

 assert(in == 0 || in == 1);

}

One of the most common mistakes is that people
think in terms of traditional programming

template AssertBinary {
 signal input in;

}

in * (1 - in) === 0;

Start Thinking in Circom

18

void AssertBinary(int in) {

 assert(in == 0 || in == 1);

}

One of the most common mistakes is that people
think in terms of traditional programming

template AssertBinary {
 signal input in;

}

in * (1 - in) === 0;

Can more things go wrong?
Well, of course :)

More on this later…

What’s next?

19

• Even though circom seems like a small and simply language, we merely scratch
the surface here.

• The best way to learn a language is to play with it!

• We encourage you to do that by following the circom docs

• Generate proofs, run the verifier, and generally poke around :)

• If you are one of the RACE winners, you’ll have to do so for the QUIZ

• More info on the private discord channel

• If you get stuck or have any question, just shoot a message on one of the
discord channels (private or public)!

