

Xstridise. | Recap

* You should have access to SaaS by now.

 Let us know if there are any issues with this.

 Hope you had some fun staring at CDGs.
» After this lecture, you will get access to more detectors.
 No more staring at CDGs, let zkVanguard do the job for you.

e Quiz 3 will be released after this lecture.

Xstridise. | Static Analysis Recap

— —

Compilation Analysis

Circom Analysis Output
source code representation report

Xstridise. l Static Analysis Recap

Compilation Analysis

|
\
\

\

Circom Analysis
source code representation

Xstridise. l Static Analysis Recap

~ All Program
States

Xstridise. l Static Analysis Recap

Static Analysis

= / Abstraction

~ All Program
States

Xstridise. l Static Analysis Recap

//Bug Pattern 1 Static Analysis

_ / Abstraction

~ All Program
States

 (Prog is Safe)

Xstridise. l Static Analysis Recap

//Bug Pattern 1 Static Analysis

p—— / Abstraction

' All Program
States

 (Prog is Safe)

Bug Patte
(Bug)

Xstridise. l Static Analysis Recap

/Bug Pattern 1 Static Analysis

p— / Abstraction

' All Program
States

. (Prog is Safe)

3ug Pattern 3

 (False alarm)
N

Bug Patte
(Bug)

Xstridise. | Let’s Start With a Demo

Doc example for under-constrained outputs

uco_example.circom

pragma circom 2.0.0;

Docs for all available
template LowestBitIsOne() { '
signal input inp; to you!

signal output outp;

outp <— 1inp & 1;
outp x (outp - 1) ===

¥

component main = LowestBitIsOne();

Gkridise. | Ouick Dive Into zk-Vanguard

 Most of zkVanguard detectors are simply looking for a path (or its
absence) on a CDG.

* For instance NDW, will look if a signal affects a branch.

 The logic of some detectors can be a bit more complex.

 Let’s take a closer look to the uc-output detector.

Xstridise. l The trivial case first

uco_example.circom

"™__ The CDG!

A

pragma circom 2.0.0;

LowestBi1tIsOne (main)

template LowestBitIsOne() { np
signal input 1inp;
signal output outp;
outp <— inp & 1; : "
outp = (outp - 1) = 0; * No constraint edge between inp and outp

L

component main = LowestBitIsOne();

 zkVanguard will report this as a bug

Lhridise. | Let’s Complicate Things

signal output outl;
signal output out2;

outl <== 1n + 5;
out2 <—— 1n & 1;
out2 *x (out2 - 1) ===

template Foo() {
signal input 1np;

signal output foutl;

signal output fout2;
D.1n <== 1np;

foutl <== b.outl:
fout2 <== b.out2;

26 component main = Foo();

n
7

Lhridise. | Let’s Complicate Things

outi iIs fine! ‘
out2 not so much

/,

in + 5;
in & 1;
(out2 - 1) === 0:

template Foo() {
signal input 1np;

signal output foutl;

signal output fout2;

component b = Bar();

20 Db.1n <== 1np;

21

2 foutl <== b.outl;

23 fout2 <== b.out2;

24 }

25

26 component main = Fool();

Xstridise. l Let’s Complicate Things

ragma circom 2.0.0;

outi iIs fine! ‘
out2 not so much

'
template Bar() {
signal 1nput 1n;
signal output outl;
signal output out2;

outl <== 1n + 5;

out2 <—— 1n & 1;

out2 % (out2 - 1) === 0:
}

— EE— _— \ ﬁEﬂDLaﬁE FOO() {
signal 1nput 1np;

Now Foo is using Bar! sign : output :gug;
S1JnNatl OUtTpuUt U -
What should we do?

Ay
OLCOoONO AL WNRE

EDﬁDDﬂEWt b — Bar();

20 Db.1n <== 1np;

21

22 foutl <== b.outl;

23 fout2 <== b.out2:

24 }

25

26 component main = Foo();

Xstridise. | What should we do?

* Nalve solution;
 Every time you analyze a template, also analyze all its sub-components.
 Problem: This doesn’t scale for real-world circuits. (Redundant computation)

 Can we do something smarter?

 Well, glad you asked :)

Gtridise. | The Smart(er) Solution

 Before you analyze a template T:

 Make sure you have analyzed all of its sub-components.

* Every time you analyze a template, create a summary for its outputs.

 Summary for Bar:

e outl1 -> {in}, out2 -> {}

e |.e., outl iIs fine, out2 is not!

Gtridise. | The Smart(er) Solution

* Now when you analyze T:

 No need to re-analyze its sub-components.

e Just use their summary to propagate information for signals of T
« Summary for Bar: out1 -> {in}, out2 -> {}

Foo (main)

* Translate those signals in terms of Foo:

e outl s b.out1, out?2 is b.out2, and in is b.In

* Therefor we can infer the following for Foo:

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

e foutl -> {inp}, fout2 -> {}

* Note constraints involving inp, fout1, fout2
with signhals from Bar

http://b.in

Ghridise. | Let’s see if zk-Vanguard agrees

----Preprocessing sources----

Running circom...

Done running circom

----Running Vanguard with dump-cdg,uc-outputs detector----
Running detector: dump-cdg

Vanguard's (DG Generator did not find any issues.

Vanguard's unconstrained output signal detector found the following issues:

[CRITICAL] In template Bar in foo.circom:3, Vanguard found an output signal that 1is unconstrained:
* Signal out?2

[CRITICAL] In template Foo in foo.circom:13, Vanguard found an output signal that is unconstrained:
* Signal out2

XSeridise | That’s all!

 Let us know if you have any question!
 Forthe RACE winners:

 Hope you have fun navigating some more complex code-bases with zk-
Vanguard

 And it’s time to also write some circom on your own ;)

