
Sta$c Analysis for
ZK Circuits

Kostas Ferles
CRO, Veridise

Recap

2

• You should have access to SaaS by now.

• Let us know if there are any issues with this.

• Hope you had some fun staring at CDGs.

• After this lecture, you will get access to more detectors.

• No more staring at CDGs, let zkVanguard do the job for you.

• Quiz 3 will be released after this lecture.

Static Analysis Recap

3

==>

Circom
source code

Analysis
representation

Output
report

Compilation Analysis

Static Analysis Recap

3

==>

Circom
source code

Analysis
representation

Output
report

Compilation Analysis

Static Analysis Recap

4

All Program
States

Static Analysis Recap

4

All Program
States

Static Analysis
Abstraction

Static Analysis Recap

4

All Program
States

Static Analysis
Abstraction

Bug Pattern 1
(Prog is Safe)

Static Analysis Recap

4

All Program
States

Static Analysis
Abstraction

Bug Pattern 1
(Prog is Safe)

Bug Pattern 2
(Bug)

Static Analysis Recap

4

All Program
States

Static Analysis
Abstraction

Bug Pattern 1
(Prog is Safe)

Bug Pattern 2
(Bug)

Bug Pattern 3
(False alarm)

Let’s Start With a Demo

5

Docs for all available
to you!

Doc example for under-constrained outputs

Quick Dive Into zk-Vanguard

6

• Most of zkVanguard detectors are simply looking for a path (or its
absence) on a CDG.

• For instance NDW, will look if a signal affects a branch.

• The logic of some detectors can be a bit more complex.

• Let’s take a closer look to the uc-output detector.

The trivial case first

7

Legend

LowestBitIsOne (main)

inp outp

Input OutputConstraint

Subcmp.
output

Subcmp.
input

Data flow

Internal Local var

Cond Op

• No constraint edge between inp and outp

• zkVanguard will report this as a bug

The CDG!

Let’s Complicate Things

8

Let’s Complicate Things

8

out1 is fine!
out2 not so much

Let’s Complicate Things

8

out1 is fine!
out2 not so much

Now Foo is using Bar!
What should we do?

What should we do?

9

• Naive solution:

• Every time you analyze a template, also analyze all its sub-components.

• Problem: This doesn’t scale for real-world circuits. (Redundant computation)

• Can we do something smarter?

• Well, glad you asked :)

The Smart(er) Solution

10

• Before you analyze a template T:

• Make sure you have analyzed all of its sub-components.

• Every time you analyze a template, create a summary for its outputs.

Legend

Bar

Foo (main)

inp

out1

out2

b.in

b.out2

b.out1

Input OutputConstraint

Subcmp.
output

Subcmp.
input

Data flow

Internal Local var

Cond Op

in

out1

out2

• Summary for Bar:

• out1 -> {in}, out2 -> {}

• I.e., out1 is fine, out2 is not!

The Smart(er) Solution

11

• Now when you analyze T:

• No need to re-analyze its sub-components.

• Just use their summary to propagate information for signals of T
• Summary for Bar: out1 -> {in}, out2 -> {}

• Translate those signals in terms of Foo:

• out1 is b.out1, out2 is b.out2, and in is b.in

• Therefor we can infer the following for Foo:

• fout1 -> {inp}, fout2 -> {}

• Note constraints involving inp, fout1, fout2
with signals from Bar

Legend

Bar

Foo (main)

inp

fout1

fout2

b.in

b.out2

b.out1

Input OutputConstraint

Subcmp.
output

Subcmp.
input

Data flow

Internal Local var

Cond Op

in

out1

out2

http://b.in

Let’s see if zk-Vanguard agrees

12

That’s all!

13

• Let us know if you have any question!

• For the RACE winners:

• Hope you have fun navigating some more complex code-bases with zk-
Vanguard

• And it’s time to also write some circom on your own ;)

