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Recap
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• You should have access to SaaS by now.


• Let us know if there are any issues with this.


• Hope you had some fun staring at CDGs.


• After this lecture, you will get access to more detectors.


• No more staring at CDGs, let zkVanguard do the job for you.


• Quiz 3 will be released after this lecture.
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Let’s Start With a Demo
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Docs for all available 
to you!

Doc example for under-constrained outputs



Quick Dive Into zk-Vanguard
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• Most of zkVanguard detectors are simply looking for a path (or its 
absence) on a CDG.


• For instance NDW, will look if a signal affects a branch.


• The logic of some detectors can be a bit more complex.


• Let’s take a closer look to the uc-output detector.



The trivial case first
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Legend

LowestBitIsOne (main)
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• No constraint edge between inp and outp 


• zkVanguard will report this as a bug

The CDG!



Let’s Complicate Things

8



Let’s Complicate Things

8

out1 is fine! 
out2 not so much 



Let’s Complicate Things

8

out1 is fine! 
out2 not so much 

Now Foo is using Bar! 
What should we do?



What should we do?
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• Naive solution:


• Every time you analyze a template, also analyze all its sub-components.


• Problem: This doesn’t scale for real-world circuits. (Redundant computation)


• Can we do something smarter?


• Well, glad you asked :) 



The Smart(er) Solution
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• Before you analyze a template T:


• Make sure you have analyzed all of its sub-components.


• Every time you analyze a template, create a summary for its outputs.

Legend

Bar

Foo (main)

inp

out1

out2

b.in

b.out2

b.out1

Input OutputConstraint

Subcmp.
output

Subcmp.
input

Data flow

Internal Local var

Cond Op

in

out1

out2

• Summary for Bar:


• out1 -> {in}, out2 -> {}


• I.e., out1 is fine, out2 is not!



The Smart(er) Solution
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• Now when you analyze T:


• No need to re-analyze its sub-components.


• Just use their summary to propagate information for signals of T
• Summary for Bar: out1 -> {in}, out2 -> {}


• Translate those signals in terms of Foo:


• out1 is b.out1, out2 is b.out2, and in is b.in


• Therefor we can infer the following for Foo:


• fout1 -> {inp}, fout2 -> {} 


• Note constraints involving inp, fout1, fout2 
with signals from Bar

Legend
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http://b.in


Let’s see if zk-Vanguard agrees
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That’s all!
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• Let us know if you have any question!


• For the RACE winners:


• Hope you have fun navigating some more complex code-bases with zk-
Vanguard


• And it’s time to also write some circom on your own ;)


