
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

BLS12-381 Implementation

Veridise Inc.
May 15, 2024

▶ Prepared For:

ChainSafe
https://chainsafe.io/

▶ Prepared By:

Jon Stephens
Benjamin Mariano
Alp Bassa

▶ Contact Us: contact@veridise.com

▶ Version History:

May. 14 2024 V1

© 2024 Veridise Inc. All Rights Reserved.

https://chainsafe.io/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-CSB-VUL-001: Errors in bls_signature_verify 8
4.1.2 V-CSB-VUL-002: Unconstrained constant 9
4.1.3 V-CSB-VUL-003: Error in conversion from Bytes to BigInt 10
4.1.4 V-CSB-VUL-004: Deviating representation order for FP12 elements . . . 11
4.1.5 V-CSB-VUL-005: Wrong implementation of line equation formula 12
4.1.6 V-CSB-VUL-006: Unsafe division by zero 13
4.1.7 V-CSB-VUL-007: No API to check membership in sub-group 15
4.1.8 V-CSB-VUL-008: Under-constrained is_square flag in sqrt_ratio 16
4.1.9 V-CSB-VUL-009: hash_to_field msg could be unconstrained 18
4.1.10 V-CSB-VUL-010: Unchecked hash length assumption 19
4.1.11 V-CSB-VUL-011: Missing check for expand_message 20
4.1.12 V-CSB-VUL-012: Missing equality check 21
4.1.13 V-CSB-VUL-013: Consider adding must_use macro 22
4.1.14 V-CSB-VUL-014: User must determine sign of ratio root 23
4.1.15 V-CSB-VUL-015: Misleading, outdated, missing or wrong comments . . 24
4.1.16 V-CSB-VUL-016: Undocumented non-zero input assumption 26
4.1.17 V-CSB-VUL-017: Unnecessary clones . 28

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

Executive Summary 1
From Apr. 8, 2024 to Apr. 18, 2024, ChainSafe engaged Veridise to review the security of
their BLS12-381 Implementation. The review covered their Rust implementation of BLS12-381
elliptic-curve-based signatures, which enables writing zero-knowledge proof circuits including
BLS12-381 curve operations using the Halo2 proving stack. Veridise conducted the assessment
over 6 person-weeks, with 3 engineers reviewing code over 2 weeks on commit 723962a. The
auditing strategy involved extensive manual analysis of the source code performed by Veridise
engineers.

Project summary. The security assessment covered the addition of BLS12-381 curve operations
to the existing halo2-lib library. The additions are intended to allow developers to validate
BLS12-381 operations in a ZK circuit. They therefore add implementations for several chips
that contain behaviors similar to the existing BN254 curve. These include the ability to check
pairings, validate BLS signatures, create G1 and G2 subgroup points, and perform various
operations on the curve.

In addition, the review covered the addition of a generic implementation of the hash-to-curve
protocol which takes an arbitrary message and maps it to a point on the curve. At a high level,
this is done by first constructing the cryptographic hash of the message and then mapping the
resulting hash to a point on the curve. The added functionality implements the hash-to-curve
protocol and also allows developers to customize the cryptographic hash function and curve
used by providing chips that implement the required functionality. In addition to this, the
developers also provide the necessary functionality for the BLS12-381 curve.

Code assessment. The BLS12-381 Implementation developers provided the source code of the
BLS12-381 Implementation contracts for review. The source code appears to be mostly original
code written by the BLS12-381 Implementation developers. However, the code is heavily inspired
by the existing implementation of the BN254 elliptic curve as well as the Hashing To Elliptic
Curve RFC. The code contains some documentation in the form of READMEs, documentation
comments on functions and storage variables, and explanation of ZK constraints.

The source code contained a test suite, which the Veridise auditors noted tested most of the
high-level expected behaviors for constructing signatures using BLS12-381. However, it should
be noted that at the time of the audit, not all tests pass. The failing tests appear to be for
benchmarking purposes and the developers noted that they are not necessarily intended to
pass.

Summary of issues detected. The audit uncovered 17 issues, 2 of which are assessed to
be of high or critical severity by the Veridise auditors. Specifically, V-CSB-VUL-001 identifies
unconstrained values used when verifying BLS signatures and V-CSB-VUL-002 corresponds to
an unconstrained constant that is used when computing cyclomic_pow. The Veridise auditors
also identified 4 medium-severity issues, including a logical error that could produce malformed

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

https://datatracker.ietf.org/doc/rfc9380/
https://datatracker.ietf.org/doc/rfc9380/

2 1 Executive Summary

big integers from bytes (V-CSB-VUL-003) and a missing zero check that could allow a division to
return an unconstrained value (V-CSB-VUL-006). Additionally, 6 low-severity issues, 4 warnings,
and 1 informational findings were also reported. The developers fixed all of the issues reported
as high or medium, and a majority of the low, warning and informational issues as well.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the new BLS12-381 and hash-to-curve implementations.

Improve Test Quality. While the project was delivered with tests that appear to exercise most
high-level functionality, we believe the quality could be improved by increasing test coverage,
particularly for some of the more complicated helper functions and lower-level APIs.

Document Assumptions. A few locations do not document important assumptions being made
by a function. In particular, V-CSB-VUL-010, V-CSB-VUL-014, and V-CSB-VUL-016 identified
cases where functions were correct if used in some expected context, but may not be properly
constrained if provided with untrusted input. We would recommend that these assumptions be
documented so that future developers are aware of additional constraints they may need to
provide.

Use Rust Macros. As discussed in issue V-CSB-VUL-013, we would recommend that the developers
make use of macros such as #[must_use]. Such macros will throw warnings at compile time if
an API is not used as intended, which can enhance the quality of projects that use the library.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
BLS12-381 Implementation 723962a Rust Halo2

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Apr. 8 - Apr. 18, 2024 Manual 3 6 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Acknowledged Fixed
Critical-Severity Issues 0 0 0
High-Severity Issues 2 2 2
Medium-Severity Issues 4 2 2
Low-Severity Issues 6 6 5
Warning-Severity Issues 4 4 4
Informational-Severity Issues 1 1 1
TOTAL 17 15 14

Table 2.4: Category Breakdown.

Name Number
Under-constrained Cell 5
Logic Error 4
Data Validation 4
Maintainability 4

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the BLS12-381 Implementation
in halo2-lib. In our audit, we sought to answer questions such as:

▶ Do hash-to-curve operations match the algorithms described in Hashing To Elliptic Curve
RFC?

▶ Does the BLS12-381 implementation match the BN254 implementation (as is appropriate)?
▶ Are all constraints appropriately constructed to avoid under/over-constrained issues?
▶ Are there potential vulnerabilities due to over/underflow of Rust integers?
▶ Can an attacker get a signature verified as matching a public key when it in fact does not?
▶ Can an attacker perform a rogue public-key attack?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved intense scrutiny of
the code by human experts. The audit focused on validating the correctness of the BLS12-381
curve operations with respect to existing implementations as well as verification that constraints
are correctly provided to avoid attacks. In particular, we conducted the audit with the aid of the
following techniques:

▶ Property-based Testing. We leveraged property-based testing to determine if the protocol
may deviate from the expected behavior. To do this, we identified several properties that
should always hold and wrote tests to pseudo-randomly exercise the protocol and check
these properties.

▶ Differential Fuzzing. To check for behaviors inconsistent with existing implementations
of the BLS12-381 curve, we performed differential fuzzing. To do so, we identified an
appropriate reference implementation (the bls12_381 crate) and executed both the new
and reference implementation on pseudo-random inputs then compared the results to
ensure there were no deviations.

Scope. The scope of this audit is limited to the changes in this pull request restricted to the
following directories:

▶ halo2-ecc/src/bls12_381

▶ halo2-ecc/src/ecc

Methodology. Veridise auditors reviewed security reports for similar elliptic curve audits,
inspected the provided tests, and read the BLS12-381 Implementation documentation (as well
as external documentation around safe implementation of BLS12-381). During the audit, the
Veridise auditors communicated with the ChainSafe developers over Telegram as necessary to
raise issues and clarify questions about the code.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

https://datatracker.ietf.org/doc/rfc9380/
https://datatracker.ietf.org/doc/rfc9380/
https://github.com/zkcrypto/bls12_381
https://github.com/axiom-crypto/halo2-lib/pull/179/

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-CSB-VUL-001 Errors in bls_signature_verify High Fixed
V-CSB-VUL-002 Unconstrained constant High Fixed
V-CSB-VUL-003 Error in conversion from Bytes to BigInt Medium Fixed
V-CSB-VUL-004 Deviating representation order for FP12 elements Medium Intended Behavior
V-CSB-VUL-005 Wrong implementation of line equation formula Medium Intended Behavior
V-CSB-VUL-006 Unsafe division by zero Medium Fixed
V-CSB-VUL-007 No API to check membership in sub-group Low Acknowledged
V-CSB-VUL-008 Under-constrained is_square flag in sqrt_ratio Low Fixed
V-CSB-VUL-009 hash_to_field msg could be unconstrained Low Fixed
V-CSB-VUL-010 Unchecked hash length assumption Low Fixed
V-CSB-VUL-011 Missing check for expand_message Low Fixed
V-CSB-VUL-012 Missing equality check Low Fixed
V-CSB-VUL-013 Consider adding must_use macro Warning Fixed
V-CSB-VUL-014 User must determine sign of ratio root Warning Fixed
V-CSB-VUL-015 Misleading, outdated, missing or wrong comments Warning Fixed
V-CSB-VUL-016 Undocumented non-zero input assumption Warning Fixed
V-CSB-VUL-017 Unnecessary clones Info Fixed

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-CSB-VUL-001: Errors in bls_signature_verify

Severity High Commit 0350dd7
Type Logic Error Status Fixed

File(s) bls12_381/bls_signature.rs

Location(s) bls_signature_verify()
Confirmed Fix At 6a9c9ea

The bls_signature_verify function, shown below, is intended to verify BLS signatures on
the BLS12-381 curve. This function, however, does not validate some important pieces of
information. In particular, it does not validate that any of the inputs are on the curve or
that they are in the appropriate subgroup. Additionally, since load_private_g2_unchecked

and load_private_g2_unchecked simply create new unconstrained witness cells, the inputs are
unconstrained.

1 pub fn bls_signature_verify(
2 &self,
3 ctx: &mut Context<F>,
4 signature: G2Affine,
5 pubkey: G1Affine,
6 msghash: G2Affine,
7) {
8 let signature_assigned = self.pairing_chip.load_private_g2_unchecked(ctx,

signature);
9 let pubkey_assigned = self.pairing_chip.load_private_g1_unchecked(ctx, pubkey);

10 let hash_m_assigned = self.pairing_chip.load_private_g2_unchecked(ctx, msghash);
11

12 self.assert_valid_signature(ctx, signature_assigned, hash_m_assigned,
pubkey_assigned);

13 }

Snippet 4.1: Snippet from bls_signature_verify

Impact The missing validation could cause the function to be susceptible to well-known attacks
on bls signature schemes such as small subgroup attacks. In addition, since the validation is
performed on unconstrained input signals which are not returned, it will be difficult for the
user to add the missing validation.

Recommendation Consider returning signature_assigned, pubkey_assigned and hash_m_assigned

and adding the missing validation. Alternatively, consider making the function only available
to tests.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 9

4.1.2 V-CSB-VUL-002: Unconstrained constant

Severity High Commit 0350dd7
Type Under-constrained Cell Status Fixed

File(s) bls12_381/final_exp.rs

Location(s) cyclotomic_pow()
Confirmed Fix At 36c4e5b

In Axiom’s Halo2 implementation, users have multiple methods to allocate and initialize a
cell in the underlying table. The cyclomatic_pow function, which is shown below, calls the
load_private function. This function then allocates and returns a vector of big integers which
reference cells in the plonk table. The referenced cells in the table are not constrained, except for
having the necessary range checks to verify the value is well-structured. As such, this value can
signify any integer of the correct size and is anticipated to be further constrained once returned.
It’s crucial to note that while this API does accept a big integer value as an input, this input is
the value assigned during the witness generation and doesn’t constrain the result.

1 pub fn cyclotomic_pow(&self, ctx: &mut Context<F>, a: FqPoint<F>, exp: u64) ->
FqPoint<F> {

2 let mut res = self.load_private(ctx, Fq12::one());
3 let mut found_one = false;
4

5 for bit in (0..64).rev().map(|i| ((exp >> i) & 1) == 1) {
6 if found_one {
7 let compressed = self.cyclotomic_square(ctx, &self.cyclotomic_compress(&

res));
8 res = self.cyclotomic_decompress(ctx, compressed);
9 } else {

10 found_one = bit;
11 }
12

13 if bit {
14 res = self.mul(ctx, &res, &a);
15 }
16 }
17

18 self.conjugate(ctx, res)
19 }

Snippet 4.2: Definition of the cyclomatic_pow function

Impact It is intended for the initial res value of the cyclomatic_pow function to be Fq12::one()

however load_private will not constrain res so that it may only refer to this value. The initial
res value is therefore under-constrained and as all of the remaining computation uses this value
without further constraining it, so to will be the return value of cyclomatic_pow.

Recommendation Rather than invoking load_private, instead call load_constant as this
function will constrain the resulting value to always be Fq12::one()

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

10 4 Vulnerability Report

4.1.3 V-CSB-VUL-003: Error in conversion from Bytes to BigInt

Severity Medium Commit 0350dd7
Type Logic Error Status Fixed

File(s) bigint/utils.rs

Location(s) decode_into_bn()
Confirmed Fix At ae6fcfd

The decode_into_bn function will decode a list of bytes into a big integer. In the process, it
attempts to determine if the input bytes are already in an appropriate format and can be directly
used as big integer limbs. It will currently do so in two cases, if the integer is intended to
represent a bit and in the case where each limb in the resulting big integer is 64 bits. The second
case, however, will not create a valid big integer as each value in bytes is 8 bits.

1 pub fn decode_into_bn<F: BigPrimeField>(
2 ctx: &mut Context<F>,
3 gate: &impl GateInstructions<F>,
4 bytes: Vec<AssignedValue<F>>,
5 limb_bases: &[F],
6 limb_bits: usize,
7) -> ProperCrtUint<F> {
8 let limb_bytes = limb_bits / 8;
9 let bits = limb_bases.len() * limb_bits;

10

11 ...
12

13 // inputs is a bool or uint8.
14 let assigned_uint = if bits == 1 || limb_bytes == 8 {
15 ProperUint(bytes)
16 } else {
17 ...
18 };
19

20 assigned_uint.into_crt(ctx, gate, value, limb_bases, limb_bits)
21 }

Snippet 4.3: Definition of the decode_into_bn function

Impact In the case where limb_bits is 64, the resulting integer will be incorrect.

Recommendation Remove the limb_bytes == 8 condition. Instead, consider checking limb_bits

== 8, limb_bytes == 1 or bits == 8

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 11

4.1.4 V-CSB-VUL-004: Deviating representation order for FP12 elements

Severity Medium Commit 0350dd7
Type Logic Error Status Intended Behavior

File(s) bls12_381/pairing.rs

Location(s) sparse_line_function_unequal(), sparse_line_function_equal()
Confirmed Fix At

The functions sparse_line_function_unequal and sparse_line_function_equal return elements
of𝔽𝑝12 represented by a 6-tuple (𝑏0 , 𝑏2 , . . . , 𝑏5)of elements of𝔽𝑝2 to represent 𝑏0+𝑏1·𝑤+· · ·+𝑏5·𝑤5,
where 𝔽𝑞12 = 𝔽𝑞2(𝑤) with 𝑤6 = 𝑢 + 1.

For the function sparse_line_function_unequal the expression has 𝑤2 , 𝑤3 and 𝑤5 terms, how-
ever the output is given as [None, Some(out2), None, Some(out3), Some(out4), None] where
out2, out3 and out4 are the coefficients of 𝑤5, 𝑤3 and 𝑤2 respectively, which does not agree
with the above representation.

Similarly, for sparse_line_function_equal the output if given as [Some(out0), None, Some(out2

), Some(out3), None, None] whereas there are terms with 𝑤0 , 𝑤3 and 𝑤4. The ordering of the
elements in the output vector needs to be reconsidered.

Impact Incorrect ordering in the representation could lead to unexpected behavior.

Recommendation Correct the output orders.

Update Some of the comments on the function’s behavior were inaccurate which misled the
auditors. The comments have been updated to be consistent with the behavior of the function.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

12 4 Vulnerability Report

4.1.5 V-CSB-VUL-005: Wrong implementation of line equation formula

Severity Medium Commit 0350dd7
Type Logic Error Status Intended Behavior

File(s) bls12_381/pairing.rs

Location(s) sparse_line_function_equal()
Confirmed Fix At

In the function sparse_line_function_equal, the expression for the line function in the case of
the tangent is given by:

(3𝑥3 − 2𝑦2) · 𝑤6 + (−3𝑥2 · 𝑄.𝑥) · 𝑤4 + (2𝑦 · 𝑄.𝑦) · 𝑤3

The tower finite fields is defined as

𝔽𝑞2 = 𝔽𝑞(𝑢) with 𝑢2 = −1,

𝔽𝑞12 = 𝔽𝑞2(𝑤) with 𝑤6 = 𝑢 + 1.

The 𝑤6 in the first term above gives a 𝑢 + 1 factor, which is missing in the implementation of
sparse_line_function_equal. As such, an additional call to mul_no_carry_w6::<_, _, 1> must
be added.

Impact Using a wrong expression for the line will cause unintended behavior.

Recommendation Add a factor of 𝑢+1 to the corresponding term by a call to mul_no_carry_w6

.

Update Some of the comments on the function’s behavior were inaccurate which misled the
auditors. The comments have been updated to be consistent with the behavior of the function.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 13

4.1.6 V-CSB-VUL-006: Unsafe division by zero

Severity Medium Commit 0350dd7
Type Under-constrained Cell Status Fixed

File(s) bls12_381/hash_to_curve.rs

Location(s) isogeny_map()
Confirmed Fix At fc8d2ce

The isogeny_map function is intended to take a point in the field and map it to a point on the
curve. The implementation of this function is given below.

1 fn isogeny_map(&self, ctx: &mut Context<F>, p: G2Point<F>) -> G2Point<F> {
2 let fp2_chip = self.field_chip();
3 // constants
4 let iso_coeffs = [
5 G2::ISO_XNUM.to_vec(),
6 G2::ISO_XDEN.to_vec(),
7 G2::ISO_YNUM.to_vec(),
8 G2::ISO_YDEN.to_vec(),
9]

10 .map(|coeffs| coeffs.into_iter().map(|iso| fp2_chip.load_constant(ctx, iso)).
collect_vec());

11

12 let fq2_zero = fp2_chip.load_constant(ctx, Fq2::ZERO);
13

14 let [x_num, x_den, y_num, y_den] = iso_coeffs.map(|coeffs| {
15 coeffs.into_iter().fold(fq2_zero.clone(), |acc, v| {
16 let acc = fp2_chip.mul(ctx, acc, &p.x);
17 let no_carry = fp2_chip.add_no_carry(ctx, acc, v);
18 fp2_chip.carry_mod(ctx, no_carry)
19 })
20 });
21

22 let x = { fp2_chip.divide_unsafe(ctx, x_num, x_den) };
23

24 let y = {
25 let tv = fp2_chip.divide_unsafe(ctx, y_num, y_den);
26 fp2_chip.mul(ctx, &p.y, tv)
27 };
28

29 G2Point::new(x, y)
30 }

Snippet 4.4: Implementation of isogeny_map

The line let x = { fp2_chip.divide_unsafe(ctx, x_num, x_den) }; uses the divide_unsafe

function, which leads to potentially unconstrained values when x_den is 0. Constraints are never
added to assert that x_den is non-zero. The same concern exists for the line let tv = fp2_chip.

divide_unsafe(ctx, y_num, y_den);.

Impact In the case that x_den and/or y_den are 0, the points on the curve x,y returned by the
function are potentially under-constrained.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

14 4 Vulnerability Report

In the expected use case where the input to the function is the result of a hash function, the
likelihood of x_den or y_den being 0 is quite low (and is definitionally very difficult for an
attacker to intentionally choose). However, this function is public, meaning there is no guarantee
the function is used with the input from a hash function as intended.

Recommendation Add checks that the denominators are non-zero.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 15

4.1.7 V-CSB-VUL-007: No API to check membership in sub-group

Severity Low Commit 0350dd7
Type Data Validation Status Acknowledged

File(s) pairing.rs

Location(s) N/A
Confirmed Fix At N/A

To avoid some common attacks such as small sub-group attacks, it can be important to check
that a point is in the proper subgroup. No such function exists despite there being an API in
BLS12-381 to create a G1 and G2 point.

Recommendation We would recommend adding a function for those building on this library
in the future.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

16 4 Vulnerability Report

4.1.8 V-CSB-VUL-008: Under-constrained is_square flag in sqrt_ratio

Severity Low Commit 0350dd7
Type Under-constrained Cell Status Fixed

File(s) ecc/hash_to_curve.rs

Location(s) sqrt_ratio()
Confirmed Fix At 35b54cd

The sqrt_ratio function encodes the following behavior:

1 is_square = True and y = sqrt(num / div) if (num / div) is square in F, and
2 is_square = False and y = sqrt(Z * (num / div)) otherwise.

Snippet 4.5: Specification for sqrt_ratio

The sqrt_ratio function does so by first allocating the is_square and y_assigned values in the
plonk table. It then computes the values of num / div as ratio and Z * num / div as ratio_z.
The y_check signal is then constrained to be the value selected by is_square and to be equal to
the square of the return value. The values y_assigned and is_square are therefore constrained
as long as ratio and ratio_z are not both squares. Since Z itself is not square, only one of ratio
and ratio_z may be square as long as the input num is not zero. This function does not check
that the input value is non-zero, however, and as a result is_square may only be constrained to
be a bit.

1 fn sqrt_ratio(
2 &self,
3 ctx: &mut Context<F>,
4 num: FC::FieldPoint,
5 div: FC::FieldPoint,
6) -> (AssignedValue<F>, FC::FieldPoint) {
7 ...
8

9 let is_square = ctx.load_witness(F::from(is_square.unwrap_u8() as u64));
10 field_chip.gate().assert_bit(ctx, is_square); // assert is_square is boolean
11

12 let y_assigned = field_chip.load_private(ctx, y);
13 let y_sqr = field_chip.mul(ctx, y_assigned.clone(), y_assigned.clone()); // y_sqr

= y1^2
14

15 let ratio = field_chip.divide(ctx, num, div); // r = u / v
16

17 let swu_z = field_chip.load_constant(ctx, C::SWU_Z);
18 let ratio_z = field_chip.mul(ctx, ratio.clone(), swu_z.clone()); // r_z = r * z
19

20 let y_check = field_chip.select(ctx, ratio, ratio_z, is_square); // y_check =
is_square ? ratio : r_z

21

22 field_chip.assert_equal(ctx, y_check, y_sqr); // assert y_check == y_sqr
23

24 (is_square, y_assigned)
25 }

Snippet 4.6: Definition of the sqrt_ratio function

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 17

Impact If num is zero, the resulting y_assigned value will be zero and is_square can be assigned
to 0 or 1. Since the is_square signal is often used to select values, this could result in an incorrect
signal being selected. It should be noted however that it may be difficult for an attacker to
control num as sqrt_ratio is currently used while computing hash_to_curve.

Recommendation Add a constraint that num should not be zero

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

18 4 Vulnerability Report

4.1.9 V-CSB-VUL-009: hash_to_field msg could be unconstrained

Severity Low Commit 0350dd7
Type Under-constrained Cell Status Fixed

File(s) ecc/hash_to_curve.rs

Location(s) expand_message()
Confirmed Fix At 196f66a

Axiom’s Halo2 library allows users to specify how a new cell should be constrained when
added to the plonk table with a QuantumCell. In particular, a Constant cell will constrain the
value of the cell to be equal to the input constant, an Existing cell will constrain the value of
the cell to be equal to another cell and finally a Witness cell will not be constrained. As such,
Witness cells typically need further interaction to either constrain their values or make them
public. In the case of expand_message, shown below, a user may pass in witness cells that have
no external constraints.

1 fn expand_message<F: BigPrimeField, HC: HashInstructions<F>>(
2 thread_pool: &mut HC::CircuitBuilder,
3 hash_chip: &HC,
4 range: &impl RangeInstructions<F>,
5 msg: impl Iterator<Item = QuantumCell<F>>,
6 dst: &[u8],
7 len_in_bytes: usize,
8) -> Result<Vec<AssignedValue<F>>, Error> {
9 ...

10

11 let assigned_msg = msg
12 .map(|cell| match cell {
13 QuantumCell::Existing(v) => v,
14 QuantumCell::Witness(v) => thread_pool.main().load_witness(v),
15 QuantumCell::Constant(v) => thread_pool.main().load_constant(v),
16 _ => unreachable!(),
17 })
18 .collect_vec();
19

20 ...
21 }

Snippet 4.7: Snippet from expand_message

Impact Should a user provide a list of witnesses, the input will be unconstrained and so the
output will be unconstrained.

Recommendation Don’t allow witness cells to be provided to expand_message.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 19

4.1.10 V-CSB-VUL-010: Unchecked hash length assumption

Severity Low Commit 0350dd7
Type Data Validation Status Fixed

File(s) ecc/hash_to_curve.rs

Location(s) expand_message()
Confirmed Fix At bddd0f4

Per the reference on which the expand_message function is based, the return value should contain
at least 32 bytes worth of data to be secure. No such check is done in this function — at most
len_in_bytes bytes are taken from the result of the hash digest. No check is ever performed to
ensure the hash digest has at least len_in_bytes bytes.

Impact This may lead to unexpected behavior or weaker guarantees.

Recommendation Add a check that the hash digest length contains at least the required
number of bytes.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16#section-5.3

20 4 Vulnerability Report

4.1.11 V-CSB-VUL-011: Missing check for expand_message

Severity Low Commit 0350dd7
Type Data Validation Status Fixed

File(s) ecc/hash_to_curve.rs

Location(s) expand_message()
Confirmed Fix At bddd0f4

According to the reference implementation, the function expand_message should abort if either
ell > 255 or len_in_bytes > 65535 or len(DST) > 255. No such checks occur in the current
implementation.

Impact Unexpected behavior may occur if the function is used when these assumptions are
not satisfied.

Recommendation Add checks that these assumptions are satisfied.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-16#section-5.3

4.1 Detailed Description of Issues 21

4.1.12 V-CSB-VUL-012: Missing equality check

Severity Low Commit 0350dd7
Type Data Validation Status Fixed

File(s) ecc/hash_to_curve.rs

Location(s) map_to_curve()
Confirmed Fix At f41e0bd

The add_unequal function adds two elliptic curve points, but it does not support adding two
points that share the same x-coordinate. It will explicitly check for this condition if the last input
to the function is true but otherwise that check will be excluded. The map_to_curve function,
shown below, omits this check. While it’s unlikely that the inputs to add_unequal, namely p1

and p2, are the same it is still possible.

1 fn map_to_curve(
2 &self,
3 ctx: &mut Context<F>,
4 u: [FC::FieldPoint; 2],
5) -> Result<EcPoint<F, FC::FieldPoint>, Error> {
6 let [u0, u1] = u;
7

8 let p1 = self.map_to_curve_simple_swu(ctx, u0);
9 let p2 = self.map_to_curve_simple_swu(ctx, u1);

10

11 let p_sum = self.ecc_chip.add_unequal(ctx, p1, p2, false);
12

13 let iso_p = self.ecc_chip.isogeny_map(ctx, p_sum);
14

15 Ok(self.ecc_chip.clear_cofactor(ctx, iso_p))
16 }

Snippet 4.8: Snippet from map_to_curve

Impact In the case where p1 = p2, the result of add_unequal will be under-constrained and
could be manipulated by an attacker.

Recommendation Make the last argument to add_unequal true in this case.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

22 4 Vulnerability Report

4.1.13 V-CSB-VUL-013: Consider adding must_use macro

Severity Warning Commit 0350dd7
Type Maintainability Status Fixed

File(s) Multiple
Location(s) N/A

Confirmed Fix At 66bd80d

Several functions, including the is_valid_signature function shown below, return values that
must be constrained by the user. If the return value is ignored for these functions, the added
constraints will effectively be useless as they only serve to compute the returned value. It is
therefore likely that in this case the user has incorrectly used the API and it should either be
removed or a logic error exists.

1 pub fn is_valid_signature(
2 &self,
3 ctx: &mut Context<F>,
4 signature: EcPoint<F, FieldVector<ProperCrtUint<F>>>,
5 msghash: EcPoint<F, FieldVector<ProperCrtUint<F>>>,
6 pubkey: EcPoint<F, ProperCrtUint<F>>,
7) -> AssignedValue<F> {
8 let g1_chip = EccChip::new(self.fp_chip);
9

10 let g1_neg = g1_chip.assign_constant_point(ctx, G1Affine::generator().neg());
11

12 let gt = self.compute_pairing(ctx, signature, msghash, pubkey, g1_neg);
13

14 let fp12_chip = Fp12Chip::<F>::new(self.fp_chip);
15 let fp12_one = fp12_chip.load_constant(ctx, Fq12::one());
16

17 fp12_chip.is_equal(ctx, gt, fp12_one)
18 }

Snippet 4.9: Definition of the is_valid_signature function

Recommendation For these functions, add the #[must_use] functions to prevent potential
errors. This macro will emit a warning at compilation time if the return value is not used.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 23

4.1.14 V-CSB-VUL-014: User must determine sign of ratio root

Severity Warning Commit 0350dd7
Type Under-constrained Cell Status Fixed

File(s) ecc/hash_to_curve.rs

Location(s) sqrt_ratio()
Confirmed Fix At 8769766

When determining the square root of the input ratio, sqrt_ratio first computes the value of
the resulting square as shown below. It then compares the square of the return value (y_sqr)
to the actual value of the square (y_check). There are, however, two values that could result in
the same y_sqr, namely y_assigned and its negation. The return value y_assigned is therefore
under-constrained since it is not constrained to have the appropriate signed.

1 fn sqrt_ratio(
2 &self,
3 ctx: &mut Context<F>,
4 num: FC::FieldPoint,
5 div: FC::FieldPoint,
6) -> (AssignedValue<F>, FC::FieldPoint) {
7 ...
8

9 let y_assigned = field_chip.load_private(ctx, y);
10 let y_sqr = field_chip.mul(ctx, y_assigned.clone(), y_assigned.clone()); // y_sqr

= y1^2
11

12 ...
13

14 field_chip.assert_equal(ctx, y_check, y_sqr); // assert y_check == y_sqr
15

16 (is_square, y_assigned)
17 }

Snippet 4.10: Definition of the sqrt_ratio function

Impact Should the caller not constrain the sign of y_assigned, it may be unconstrained.
It should be noted that all of the code that uses sqrt_ratio does resolve the sign of y but
documentation should be added so future users of the function do so as well.

Recommendation Document the assumption that the caller must constrain the sign of y.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

24 4 Vulnerability Report

4.1.15 V-CSB-VUL-015: Misleading, outdated, missing or wrong comments

Severity Warning Commit 0350dd7
Type Maintainability Status Fixed

File(s) Multiple
Location(s) N/A

Confirmed Fix At da31478

In several places the code seems to have been revised after comments have been added. Hence the
current comments are wrong or not up-to-date. Some comments have been directly incorporated
verbatim from other places, but do not apply. In some places additional assumptions have not
been state precisely in the comments. Some variable and function names can be misleading.

Here a list of places which could benefit from careful revision:

▶ bls12_381/bls_signature.rs

• It is indicated that verification is done by checking e(g1, signature)*e(pubkey, -H

(m)) === 1, whereas it checks e(-g1, signature)*e(pubkey, H(m)) === 1 (which is
of course equivalent).

▶ bls12_381/pairing.rs

• The comment for function sparse_line_function_unequal does not reflect the appro-
priate variable names and output order.

• Line 42: out4 is the coefficient of 𝑤2 and would better be called out2.
• Line 43: out2 is the coefficient of 𝑤5 and would better be called out5.
• line 80: out2 is the coefficient of 𝑤4 and would better be called out4.
• The comments for function sparse_line_function_equal state that Q = (x, y) is

a point in E(Fp) should be in E(Fp2) and P = (P.x, P.y) in E(Fp2) should be

in E(Fp). The comments then give the expression (3x^3 - 2y^2)(XI_0 + u) + w^4

(-3 x^2 * Q.x) + w^3 (2 y * Q.y) as part of the formula for computing the output
values. In this equation x and y should be denoted Q.x and Q.y and Q.x and Q.y

should be P.x and P.y.
• The comments for function fp12_multiply_with_line_unequal confuse P and Q. In

particular, P, P0, and P1 should be Q, Q0, and Q1. Furthermore, there is an unstated
assumption that Q0 != Q1 which should be added to the comments.

▶ bls12_381/hash_to_curve.rs

• Line 156: Plet should be P.
• The function name mul_by_bls_x is confusing — this function multiplies by -x , i.e.,

by 0xd201000000010000 . Either the name should be changed or details specified as a
comment.

Impact Inadequate comments hinder the understanding of the expected behavior and impede
the re-usability and maintenance of the code. Misunderstanding in the behavior might yield
bugs when code is revised / reused. Use of functions while unaware of implicit assumptions
can cause further vulnerabilities.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 25

Recommendation Revise unclear code comments to improve understanding of the code and
prevent code misuse in the future.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

26 4 Vulnerability Report

4.1.16 V-CSB-VUL-016: Undocumented non-zero input assumption

Severity Warning Commit 0350dd7
Type Maintainability Status Fixed

File(s) bls12_381/final_exp.rs

Location(s) cyclotomic_decompress(), final_exp()
Confirmed Fix At 504f771

The divide_unsafe function allows a user to divide two values but is undefined in cases where the
denominator is 0. Rather than explicitly checking that this property holds, the caller must ensure
that the denominator cannot be 0. Two functions, cyclomatic_decompress and final_exp, shown
below, assume that some inputs are non-zero but do not explicitly state that assumption.

1 pub fn cyclotomic_decompress(
2 &self,
3 ctx: &mut Context<F>,
4 compression: Vec<FqPoint<F>>,
5) -> FqPoint<F> {
6 let [g2, g3, g4, g5]: [_; 4] = compression.try_into().unwrap();
7

8 ...
9

10 let g1_0 = fp2_chip.divide_unsafe(ctx, &g1_num, &g3);
11 let g2_is_zero = fp2_chip.is_zero(ctx, &g2);
12 // resulting ‘g1‘ is already in "carried" format (witness is in ‘[0, p)‘)
13 let g1 = fp2_chip.0.select(ctx, g1_0, g1_1, g2_is_zero);
14

15 ...
16 }

Snippet 4.11: Snippet from the cyclomatic_decompress function

In the cyclotomic_decompress function, shown above, the function assumes that g2 and g3

cannot simultaneously be 0. While this will hold if the inputs are valid (i.e. computed by
cyclomatic_compress), in cases where the input comes from an unknown source this must be
validated.

1 pub fn final_exp(
2 &self,
3 ctx: &mut Context<F>,
4 a: <Self as FieldChip<F>>::FieldPoint,
5) -> <Self as FieldChip<F>>::FieldPoint {
6 // a^{q^6} = conjugate of a
7 let f1 = self.conjugate(ctx, a.clone());
8 let f2 = self.divide_unsafe(ctx, &f1, a);
9

10 ...
11 }

Snippet 4.12: Snippet from the final_exp function

Similarly, the final_exp function shown above assumes that the input a is not equal to 0.
Currently, the function’s input is computed by miller_loop which should return a non-zero

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

4.1 Detailed Description of Issues 27

value. If this function input should ever come from an unknown source or a source that does
not have the same properties, however, it is possible for the output to be under-constrained.

Impact In both of these cases, it is possible for the output of the functions to be under-
constrained.

Recommendation We would recommend either explicitly documenting the assumptions so
that future users of the API perform the validation as necessary, or consider add the necessary
zero-checks to the function.

Veridise Audit Report: BLS12-381 Implementation © 2024 Veridise Inc.

28 4 Vulnerability Report

4.1.17 V-CSB-VUL-017: Unnecessary clones

Severity Info Commit 0350dd7
Type Maintainability Status Fixed

File(s) bls12_381/pairing.rs, ecc/hash_to_curve.rs

Location(s) batched_pairing(), psi()
Confirmed Fix At 2b793af

The following line in batched_pairing unnecessarily clones the mml value (line 432):

1 let fe = fp12_chip.final_exp(ctx, mml.clone());

Snippet 4.13: Snippet from batched_pairing

Additionally, the following lines unnecessarily clone psi_x and psi_y in the function psi (lines
165-166):

1 let x = self.field_chip().mul(ctx, x_frob, psi_x.clone());
2 let y = self.field_chip().mul(ctx, y_frob, psi_y.clone());

Snippet 4.14: Snippet from psi

Finally, psi2_x is unnecessarily cloned in psi2 (line 180) as shown in the snippet below:

1 let x = self.field_chip().mul(ctx, p.x, psi2_x.clone());

Snippet 4.15: Snippet from psi2

Impact This logic is inefficient and may confuse future developers.

Recommendation Remove unnecessary clones.

© 2024 Veridise Inc. Veridise Audit Report: BLS12-381 Implementation

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-CSB-VUL-001: Errors in bls_signature_verify
	V-CSB-VUL-002: Unconstrained constant
	V-CSB-VUL-003: Error in conversion from Bytes to BigInt
	V-CSB-VUL-004: Deviating representation order for FP12 elements
	V-CSB-VUL-005: Wrong implementation of line equation formula
	V-CSB-VUL-006: Unsafe division by zero
	V-CSB-VUL-007: No API to check membership in sub-group
	V-CSB-VUL-008: Under-constrained is_square flag in sqrt_ratio
	V-CSB-VUL-009: hash_to_field msg could be unconstrained
	V-CSB-VUL-010: Unchecked hash length assumption
	V-CSB-VUL-011: Missing check for expand_message
	V-CSB-VUL-012: Missing equality check
	V-CSB-VUL-013: Consider adding must_use macro
	V-CSB-VUL-014: User must determine sign of ratio root
	V-CSB-VUL-015: Misleading, outdated, missing or wrong comments
	V-CSB-VUL-016: Undocumented non-zero input assumption
	V-CSB-VUL-017: Unnecessary clones

