
Auditing Report

Hardening Blockchain Security with Formal Methods

FOR

Stellar Timelock Contract

Veridise Inc.

August 6, 2024

▶ Prepared For:

57Blocks

https://57blocks.io

▶ Prepared By:

Evgeniy Shishkin

Alberto Gonzalez

▶ Contact Us:

contact@veridise.com

▶ Version History:

Aug. 6, 2024 V2

Jul. 18, 2024 V1

Jul. 16, 2024 Initial Draft

© 2024 Veridise Inc. All Rights Reserved.

https://57blocks.io
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 5

3 Audit Goals and Scope 7

3.1 Audit Goals . 7

3.2 Audit Methodology & Scope . 7

3.3 Classification of Vulnerabilities . 7

4 Vulnerability Report 9

4.1 Detailed Description of Issues . 10

4.1.1 V-STL-VUL-001: Centralization Risk . 10

4.1.2 V-STL-VUL-002: Operation delay bounds are not enforced 11

4.1.3 V-STL-VUL-003: Number of proposers is not enforced 12

4.1.4 V-STL-VUL-004: Function name not validated in administrative operations 13

Veridise Audit Report: Stellar Timelock Contract © 2024 Veridise Inc.

Executive Summary 1
From July 9, 2024 to July 11, 2024, 57Blocks engaged Veridise to conduct the program code

audit of their Stellar Timelock Contract project. The audit covered the logic behind a Timelock

contract, including a role-based access control system.

Veridise conducted the audit over 6 person-days, with 2 security analysts reviewing code

over 3 days on commit f143245. The auditing strategy involved extensive manual code review

performed by Veridise security analysts.

Project overview. In various decentralized applications (DApps), there is a common issue

where administrative actions can be taken at any time by privileged users, leaving regular

users unable to respond quickly if they object to the action. This issue can undermine trust in

DApps and introduce additional security risks. To make things more manageable, the Timelock

mechanism has been introduced.

The Timelock is a middleman between a party initiating a smart contract operation and a

destination smart contract itself. Its purpose is to introduce a reasonable delay between the

initiation of the operation and its execution in the smart contract. This delay allows DApp users

or token holders to critically evaluate the implications of the issued operation before it gets

executed. Stellar Timelock Contract is concrete implementation of such Timelock mechanism,

heavily inspired by OpenZeppelin’s implementation.

The workflow for applying Stellar Timelock Contract to a token contract is described below.

A token owner deploys the Stellar Timelock Contract instance specifying the following parame-

ters:

▶ Owner - the Owner is a privileged user who is able to assign and revoke the roles of

proposer, canceller, and executor to other users.

▶ Minimum delay - the minimum time interval that should be observed after submitting

and before executing a privileged operation. During this time, regular users have a chance

to critically assess the implications of the submitted operation.

▶ Proposers - a set of user addresses that are assigned Proposer and Canceller roles right at

the initialization step.

▶ Executors - a set of user addresses that are assigned Executor roles right at the initialization

step.

The token contract owner changes the token contract ownership from their own address to the

address of the deployed Stellar Timelock Contract, effectively relinquishing their ownership

role.

From that point, users with specific roles can schedule, execute or cancel privileged requests to

the destination token contract by issuing corresponding operations into the Stellar Timelock

Contract.

Veridise Audit Report: Stellar Timelock Contract © 2024 Veridise Inc.

2 1 Executive Summary

For example, to execute the token mint operation, the operation has to be submitted to Stellar

Timelock Contract by a user with the Proposer role, specifying a time interval that should be

observed before the operation can be executed.

After the specified time has passed, any user who has the Executor role can ask Stellar Timelock

Contract to execute the submitted operation using all the same parameters that were used to

submit it.

If the submitted operation becomes irrelevant, any user with the Canceller role can cancel it.

Please note the following nuances:

▶ The Owner of the Timelock is a privileged entity that is able to grant and revoke Proposer,

Canceller and Executor roles, as well as changing the minimum delay value. If the Owner’s

keys are compromised, it could have serious consequences for the contract being managed.

▶ The submitted operation is not guaranteed to be executed on time, or executed at all.

Code assessment. The developers provided the source code of the Stellar Timelock Contract

contracts for the code audit. The source code appears to be mostly original code written by the

Stellar Timelock Contract developers. However, the source code is based on the OpenZeppelin

versions of the TimelockController‗ and AccessControl† contracts. To facilitate the Veridise

security analysts’ understanding of the code, the Stellar Timelock Contract developers shared

documentation in the form of READMEs and documentation comments on functions and

storage variables.

The source code included a test suite that effectively covered aspects of the Stellar Timelock

contract related to both role-based access control and the main Timelock operations.

Summary of issues detected. The code audit uncovered 4 issues. The most important were

2 low-severity issues: a centralization risk (V-STL-VUL-001) and insufficient operation delay

validation (V-STL-VUL-002). The security analysts also identified 1 warning and 1 informational

finding. The reported issues are not yet acknowledged by the developers.

Recommendations. After conducting the code audit for the protocol, the security analysts

had a few suggestions to improve the Stellar Timelock Contract.

It is recommended to improve the documentation in the following way:

▶ Outline the differences between the Stellar Timelock Contract and the OpenZeppelin

implementation. For instance, comparing to OpenZeppelin Timelock, the Stellar Timelock

Contract does not contain batch operations processing.

▶ It is recommended to add advise on how to select the right number of privileged users for

different scenarios.

‗ https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/

TimelockController.sol
† https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/

AccessControl.sol

© 2024 Veridise Inc. Veridise Audit Report: Stellar Timelock Contract

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/TimelockController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/governance/TimelockController.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol

3

Disclaimer. We hope that this report is informative but provide no warranty of any kind,

explicit or implied. The contents of this report should not be construed as a complete guarantee

that the system is secure in all dimensions. In no event shall Veridise or any of its employees be

liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,

arising from, out of or in connection with the results reported here.

Veridise Audit Report: Stellar Timelock Contract © 2024 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform

Stellar Timelock Contract f143245 Rust Soroban

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort

July 9 - July 11, 2024 Manual 2 6 person-days

Table 2.3: Vulnerability Summary.

Name Number Acknowledged Fixed

Critical-Severity Issues 0 0 0

High-Severity Issues 0 0 0

Medium-Severity Issues 0 0 0

Low-Severity Issues 2 2 1

Warning-Severity Issues 1 1 0

Informational-Severity Issues 1 1 1

TOTAL 4 4 2

Table 2.4: Category Breakdown.

Name Number

Data Validation 3

Access Control 1

Veridise Audit Report: Stellar Timelock Contract © 2024 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a code audit of Stellar Timelock Contract’s smart

contracts. The security analysis aimed to answer questions such as:

▶ Are there any common Soroban implementation flaws, such as incorrect storage manage-

ment, incorrect build order, or others?

▶ Can the logic deviations from the OpenZeppelin implementation cause issues?

▶ Can the executor, proposer, and canceller perform actions beyond their expected behavior?

▶ Is there a way for a malicious user to prevent the scheduling, execution, or cancellation of

operations outside of the access control system?

▶ Is it possible that a mistake in operations scheduling could cause a denial of service for

the system?

▶ Is it possible to execute an operation before its deadline?

3.2 Audit Methodology & Scope

Scope. The scope of this code audit was limited to the following contracts:

▶ time_lock/src/contract.rs

▶ time_lock/src/lib.rs

▶ time_lock/src/role_base.rs

▶ time_lock/src/time_lock.rs

Methodology. Veridise security analysts inspected the provided tests, and read the Stellar Timelock

Contract documentation. They then began a manual review of the code taking into consideration

the OpenZeppelin’s contracts.

3.3 Classification of Vulnerabilities

When Veridise security analysts discover a possible security vulnerability, they must estimate

its severity by weighing its potential impact against the likelihood that a problem will arise.

Table 3.1 shows how our security analysts weigh this information to estimate the severity of a

given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely Info Warning Low Medium

Likely Warning Low Medium High

Very Likely Low Medium High Critical

Veridise Audit Report: Stellar Timelock Contract © 2024 Veridise Inc.

8 3 Audit Goals and Scope

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake

Requires a complex series of steps by almost any user(s)
Likely - OR -

Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user

Affects a large number of people and can be fixed by the user
Bad - OR -

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix
Very Bad - OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: Stellar Timelock Contract

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,

we log the type of the issue, its severity, location in the code base, and its current status (i.e.,

acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status

V-STL-VUL-001 Centralization Risk Low Fixed
V-STL-VUL-002 Operation delay bounds are not enforced Low Partially Fixed
V-STL-VUL-003 Number of proposers is not enforced Warning Acknowledged
V-STL-VUL-004 Function name not validated in administrative o. . . Info Fixed

Veridise Audit Report: Stellar Timelock Contract © 2024 Veridise Inc.

10 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-STL-VUL-001: Centralization Risk

Severity Low Commit f143245

Type Access Control Status Fixed

File(s) contract.rs

Location(s) See the description

Confirmed Fix At 4e24b47

The timelock contract appears to closely follow the OpenZeppelin timelock contract implemen-

tation as its reference. According to the original OpenZeppelin design, during initialization, the

deployer provides a user address to be assigned an admin role. This admin role is intended to

be renounced at some point to conduct all admin operations through timelocked proposals,

thereby avoiding the concentration of power in a single user’s hands - a key aspect of the

OpenZeppelin design.

However, the current timelock contract lacks this feature. While the owner could technically

relinquish control by transferring ownership to a dummy address such as address(0), this would

render all administrative functions, including grant_role(), revoke_role(), update_min_delay(),

and update_owner() inaccessible.

Impact The current implementation does not allow for the removal of the owner, thereby

introducing a risk of centralization.

Recommendation It is recommended to enable the execution of administrative functions by

scheduling them as operations.

Developer Response Developers implemented the recommended fix.

© 2024 Veridise Inc. Veridise Audit Report: Stellar Timelock Contract

4.1 Detailed Description of Issues 11

4.1.2 V-STL-VUL-002: Operation delay bounds are not enforced

Severity Low Commit f143245

Type Data Validation Status Partially Fixed

File(s) contract.rs

Location(s) initialize(), update_min_delay() , schedule()

Confirmed Fix At 0e0310b

The timelock contract employs a globally defined value called the minimum delay that the

delay for submitting operations cannot be less than. The initialization logic enforces this value

to be greater than 0 since a delay of 0 means the operation can be executed in the same block in

which it was published, contradicting the very purpose of the timelock contract.

The timelock contract allows the minimum delay value to be changed later by calling the

update_min_delay() function. However, this function does not include this check.

Impact The following problems were identified for this part of the code:

▶ Setting the minimum delay that is only slightly greater than 0does not provide a reasonable

timeframe for users to analyze the submitted operation.

▶ The minimum delay value is not verified within the update_min_delay() function.

▶ The delay value is not compared against a maximum value, allowing the submission of

operations with unreasonably long time-frames.

Recommendation It is recommended to implement checks for both the minimum delay for

the update_min_delay() function, as well as introduce the maximum delay value.

Developer Response We reviewed Openzeppelin’s code and found that they didn’t implement

such minimum and maximum check for delay. However, considering that a delay that is too

long could result in the entire system being unmodifiable for extended period, we have added a

limit to the maximum value.

Veridise Audit Report: Stellar Timelock Contract © 2024 Veridise Inc.

12 4 Vulnerability Report

4.1.3 V-STL-VUL-003: Number of proposers is not enforced

Severity Warning Commit f143245

Type Data Validation Status Acknowledged

File(s) contract.rs

Location(s) grant_role() , revoke_role()

Confirmed Fix At

During the initialization, the timelock contract grants special proposer and canceller per-

missions, as well as executor permissions to a group of distinguished users. From a security

perspective, it is a good idea to limit the total number of such users to a reasonable amount.

This limitation is enforced by a check in the initialize() function, which will not allow more

than MAX_ACCOUNTS_NUM user accounts to be passed during initialization.

However, a similar check is not employed in the grant_role() function. Hence, while the initial

set of privileged users may be small, the subsequent grant_role() calls can significantly increase

and make it less manageable over time.

Additionally, if the aim is to make the timelock contract ownerless, as was the original design

intention of the OpenZeppelin reference contract, it is important to also check for the lower

bound of total granted roles. Having too few privileged users can also harm the system.

Impact Allowing too many or too few users propose, cancel or execute operations in the

time-lock contract may affect its stability and security.

Recommendation It is recommended to implement upper and lower bound checks for the

total number of proposer, canceler, and executor roles in the grant_role() and revoke_role()

functions.

Developer Response Openzeppelin still has not added checks for the number of roles(prospsers,

executors). We believe that the managment of roles should be handled by the users of the

timelock cotract themselves.

© 2024 Veridise Inc. Veridise Audit Report: Stellar Timelock Contract

4.1 Detailed Description of Issues 13

4.1.4 V-STL-VUL-004: Function name not validated in administrative operations

Severity Info Commit f143245

Type Data Validation Status Fixed

File(s) contract.rs

Location(s) schedule()

Confirmed Fix At 72d7a82

The timelock contract permits the scheduling of administrative operations, such as:

▶ update_min_delay

▶ grant_role

▶ revoke_role

▶ update_owner

To determine whether an operation is administrative, the contract checks if the operation’s

destination address matches the timelock contract’s address, and if so, it enqueues the operation

accordingly. However, the fn_name field, which specifies the expected function call, is not verified

in any way.

Impact Submitting an administrative operation with a misspelled function name can lead to

the operation being reverted, resulting in a loss of time.

Recommendation Since the timelock contract contains only four functions, it is advisable to

explicitly check that the fn_name parameter within the schedule function matches one of these

four functions.

Developer Response Developers implemented the recommended fix.

Veridise Audit Report: Stellar Timelock Contract © 2024 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-STL-VUL-001: Centralization Risk
	V-STL-VUL-002: Operation delay bounds are not enforced
	V-STL-VUL-003: Number of proposers is not enforced
	V-STL-VUL-004: Function name not validated in administrative operations

