¥ Veridise
Auditing Report

Hardening Blockchain Security with Formal Methods

Veridise Inc.
December 3, 2024

» Prepared For:

Cata Labs
https://catalabs.org/

» Prepared By:

Jon Stephens

Benjamin Sepanski
Nicholas Brown

» Contact Us:
contact@veridise.com

» Version History:

Dec. 3, 2024 V1
Oct. 28, 2024 Initial Draft

© 2024 Veridise Inc. All Rights Reserved.

https://catalabs.org/
contact@veridise.com

Contents

Contents 1ii
1 Executive Summary 1
2 Project Dashboard 3
3 Security Assessment Goals and Scope 5
3.1 Security AssessmentGoals o oL o oL 5
3.2 Security Assessment Methodology & Scope 5
3.3 Classification of Vulnerabilities 5

4 Vulnerability Report 7
41 Detailed DescriptionofIssues 8
411 V-BPR-VUL-001: Incorrect Blocks May be Erased During a Reorg 8

41.2 V-BPR-VUL-002: BitcoinTx not Properly Validated to be Legitimate . . . 9

41.3 V-BPR-VUL-003: Prism has Weaker Safety Guarantees than Bitcoin . . . 11

414 V-BPR-VUL-004: Single Heavy Block can DoS Prism 13

41.5 V-BPR-VUL-005: Missing Transaction Merkle Tree Safety Checks 15

41.6 V-BPR-VUL-006: Block Hash of 0 can Always be Proven 17

417 V-BPR-VUL-007: Re-organized Blocks are Double Counted 18

418 V-BPR-VUL-008: Bitcoin Work Calculation is Incorrect 20

419 V-BPR-VUL-009: Ordinal Transfer Verification is Restrictive 22

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

% Executive Summary

From Oct. 14,2024 to Oct. 25,2024, Cata Labs engaged Veridise to conduct a security assessment of
their Bitcoin Prism project. The security assessment covered a Bitcoin light client implementation
to run on an EVM chain. Veridise conducted the assessment over 4 person-weeks, with 2 security
analysts reviewing the project over 2 weeks on commit c98c043f. The review strategy involved
a tool-assisted analysis of the program source code performed by Veridise security analysts as
well as thorough code review.

Project Summary. The Bitcoin Prism project is a light-client for the Bitcoin blockchain and
can be used to perform payment verification. It does so by mirroring the recent state of bitcoin
on-chain that can be queried by users. This state can be updated by anyone so long as the
provided chain passes validation that the chain could be a valid bitcoin state (e.g. previous
block is correct, hash is below target, etc). If two different conflicting chains are submitted, the
"heaviest" chain is kept (i.e. the chain with the most work). With these validations, it is therefore
likely that the light-client will reflect the true bitcoin state as long as an honest user submits the
true state because potential attackers would likely need more hashing power than bitcoin to
maintain the heaviest chain. The Bitcoin Prism also provides utilities to help prove information
about bitcoin. This includes utilities to retrieve information about the bitcoin state from the
light client, the ability to prove that a transaction occurred and utilities to interact with common
bitcoin scripts.

Code Assessment. The Bitcoin Prism developers provided the source code of the Bitcoin Prism
contracts for the code review. The source code is based on Bitcoin Mirror which is an existing
light client implementation for EVM. It contains documentation in the form of READMEs and
documentation comments on functions and storage variables. To facilitate the Veridise security
analysts understanding of the code, the Bitcoin Prism developers met with the Veridise security
analysis to explain the project at a high level.

The source code contained a test suite, which the Veridise security analysts noted covered a
variety of success and failure conditions for the various components of the protocol.

Summary of Issues Detected. The security assessment uncovered 9 issues, 2 of which are
assessed to be of high or critical severity by the Veridise analysts. Specifically, valid blocks may be
erased during a reorg (V-BPR-VUL-001), and Bitcoin transactions aren’t properly validated to be
legitimate (V-BPR-VUL-002). The Veridise analysts also identified 1 medium-severity issue that
the Bitcoin Prism implementation has weaker safety guarantees than Bitcoin (V-BPR-VUL-003)
as well as 2 low-severity issues, 3 warnings, and 1 informational finding . The Bitcoin Prism
developers have either fixed or responded to all of the issues.

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

1 Executive Summary

Recommendations. After conducting the assessment of the protocol, the security analysts
had a few suggestions to improve the Bitcoin Prism. The Veridise security analysts would
recommend performing stricter validation on the inputs to the Bitcoin Prism and documenting
outputs that are intended to be error values. They would also recommend that documentation
be provided to users so that they are able to evaluate the risks involved when interacting with
the project (e.g. how many confirmations should be specified).

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

\Z Project Dashboard

Table 2.1: Application Summary.

Platform

Bitcoin Prism c98c043f Solidity Ethereum

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

Oct. 14-Oct. 25,2024 Manual & Tools 4 person-weeks

Table 2.3: Vulnerability Summary.

Adnovicized

Critical-Severity Issues
High-Severity Issues
Medium-Severity Issues
Low-Severity Issues
Warning-Severity Issues
Informational-Severity Issues
TOTAL

O = W IN =N
R~ NN =N
G O N = ON

Table 2.4: Category Breakdown.

Logic Error 5
Data Validation 3
Denial of Service 1

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

'\'% Security Assessment Goals and Scope

3.1 Security Assessment Goals

The engagement was scoped to provide a security assessment of Bitcoin Prism’s smart contracts.
During the assessment, the security analysts aimed to answer questions such as:

» Can a user successfully submit fake blocks to the Prism?

» Can the project recover if incorrect blocks were previously accepted?

» Will correct block hashes in storage remain intact?

» Is it possible to prove that a transaction happened that didn't actually happened?

» Are inputs properly validated?

» Will the on-chain state mirror the state of Bitcoin with high probability over an extended
period?

3.2 Security Assessment Methodology & Scope

Security Assessment Methodology. To address the questions above, the security assessment
involved a combination of human experts and automated program analysis & testing tools. In
particular, the security assessment was conducted with the aid of the following techniques:

» Static analysis. To identify potential common vulnerabilities, security analysts leveraged
Veridise’s custom smart contract analysis tool Vanguard, as well as the open-source tool
Slither. These tools are designed to find instances of common smart contract vulnerabilities,
such as reentrancy and uninitialized variables.

Scope. The scope of this security assessment was limited to the src/ folder of the source code
provided by the Bitcoin Prism developers, which contains the smart contract implementation of
the Bitcoin Prism.

Methodology. Veridise security analysts inspected the provided tests and read the Bitcoin Prism
documentation. They then began a review of the code assisted by static analyzers.

During the security assessment, the Veridise security analysts regularly met with the Bitcoin
Prism developers to ask questions about the code.

3.3 Classification of Vulnerabilities

When Veridise security analysts discover a possible security vulnerability, they must estimate
its severity by weighing its potential impact against the likelihood that a problem will arise.

The severity of a vulnerability is evaluated according to the Table 3.1.

The likelihood of a vulnerability is evaluated according to the Table 3.2.

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

3 Security Assessment Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely | NI MOSSRE M I Low i Medium
Likely [0 Wasming | Low. | Medium [0 High 0
Very Likely [oBoWe] Medium [g IR

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

The impact of a vulnerability is evaluated according to the Table 3.3:
Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

¥ Vulnerability Report

This section presents the vulnerabilities found during the security assessment. For each issue
found, the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.) is specified. Table 4.1 summarizes the issues discovered:

V-BPR-VUL-001
V-BPR-VUL-002
V-BPR-VUL-003
V-BPR-VUL-004
V-BPR-VUL-005
V-BPR-VUL-006
V-BPR-VUL-007
V-BPR-VUL-008
V-BPR-VUL-009

Table 4.1: Summary of Discovered Vulnerabilities.

(D pescription [Severity | Status |

Incorrect Blocks May be Erased During a. ..
BitcoinTx not Properly Validated to be. ..
Prism has Weaker Safety Guarantees than. ..
Single Heavy Block can DoS Prism

Missing Transaction Merkle Tree Safety . ..
Block Hash of 0 can Always be Proven
Re-organized Blocks are Double Counted
Bitcoin Work Calculation is Incorrect
Ordinal Transfer Verification is Restrictive

Veridise Audit Report: Bitcoin Prism

High Fixed

High Fixed
Medium Partially Fixed

Low Fixed

Low Partially Fixed
Warning Won't Fix
Warning Fixed
Warning Fixed

Info Acknowledged

© 2024 Veridise Inc.

v A W N =

4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-BPR-VUL-001: Incorrect Blocks May be Erased During a Reorg

High 980043
Logic Error Fixed
BtcPrism.sol
submit()

The submit () function in BtcPrism is used to update the BtcPrism with the latest blocks from

the Bitcoin chain. The BtcPrism implementation stores the last NUM_BLOCKS (which is currently
set to 2000) blocks in an array called blockHashes where each block is indexed by its block
number modulo NUM_BLOCKS .

When a reorg occurs with a heavier chain that is shorter than the existing chain, the blocks that
aren’t overwritten by new blocks are reset to zero to prevent invalid blocks from being stored in
blockHashes . However this loop removes the blocks by indexing the blocks by the block
number modulo MAX_ALLOWED_REORG (which is currently set to 1000). This means that if the block
being erased has a block number such that the block number modulo NUM_BLOCKS is greater
than MAX_ALLOWED_REORG, the block being erased will be a completely different block than the
block that should be erased.

// erase any block hashes above newHeight, now invalidated.

// (in case we just accepted a shorter, heavier chain.)

for (uint256 i = newHeight + 1; i <= latestBlockHeight; ++i) {
blockHashes[i % MAX_ALLOWED_REORG] = 0;

-

Snippet 4.1: Snippet from submit ()

Impact Transactions that happened in the blocks that were accidentally erased won’t be able
to be proven by the BtcPrism which could result in significant loss of funds for users. As an
example, an honest filler for cross cats could be effectively challenged on an order that was
filled during one of the erased blocks.

Recommendation Index by the block number modulo NUM_BLOCKS to correctly erase the
invalid blocks

Developer Response The developers have implemented the recommendation.

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

4.1 Detailed Description of Issues

4.1.2 V-BPR-VUL-002: BitcoinTx not Properly Validated to be Legitimate

High coBc043
Data Validation Fixed
BtcProof.sol
parseBitcoinTx()
1471969

The parseBitcoinTx function parses a Bitcoin transaction and returns a struct describing the
transaction. This function will not revert if the Bitcoin transaction is invalid but instead uses a
struct field called validFormat to indicate that the transaction was parsed successfully. In the

case where the flag is not set, the returned BitcoinTx can contain data that was improperly
parsed and therefore could allow incorrect data to be accessed as shown below.

function parseBitcoinTx(bytes calldata rawTx)
internal
pure
returns (BitcoinTx memory ret)

-~

// Read transaction outputs
uint256 nOutputs;
(nOutputs, offset) = readVarInt(rawTx, offset);
ret.outputs = new BitcoinTxOut[] (nOutputs);
for (uint256 i = 0; i < nOutputs; ++i) {
BitcoinTxOut memory txOut;
txQut.valueSats = Endian.reverse64(
uint64(bytes8(rawTx[offset:offset += 8]1))
)
uint256 nOutScriptBytes;
(nOutScriptBytes, offset) = readVarInt(rawTx, offset);
tx0ut.script = rawTx[offset:offset += nOutScriptBytes];
ret.outputs[i] = txOut;

// Finally, read locktime, the last four bytes in the tx.
ret.locktime = Endian.reverse32(
uint32(bytes4(rawTx[offset:offset += 4]))
)
if (offset !'= rawTx.length) {
return ret; // Extra data at end of transaction.

// Parsing complete, sanity checks passed, return success.
ret.validFormat = true;
return ret;

-

Snippet 4.2: Snippet from parseBitcoinTx

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

10

© 00 N O U B W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

4 Vulnerability Report

When this function is later used by subvalidate shown below or the functions that invoke this
function, the validFormat flag is ignored and the transaction information is used as a trusted
source.

function subValidate(
bytes32 blockHash,
BtcTxProof calldata txProof

) internal pure returns (BitcoinTx memory parsedTx) {
// 5. Block header to block hash

bytes calldata proofBlockHeader = txProof.blockHeader;

bytes32 blockHeaderBlockHash = getBlockHash(proofBlockHeader);
if (blockHeaderBlockHash != blockHash) revert BlockHashMismatch(
blockHeaderBlockHash, blockHash);

// 4. and 3. Transaction ID included in block
bytes32 txRoot = getTxMerkleRoot (
txProof.txId,
txProof.txIndex,
txProof.txMerkleProof
)
bytes32 blockTxRoot = getBlockTxMerkleRoot (proofBlockHeader);
if (blockTxRoot != txRoot) revert TxMerkleRootMismatch(blockTxRoot, txRoot);

bytes calldata rawTx = txProof.rawTx;

// 2. Raw transaction to TxID

bytes32 rawTxId = getTxID(rawTx);

if (rawTxId !'= txProof.txId) revert TxIDMismatch(rawTxId, txProof.txId);

// Parse raw transaction for further validation.
return parsedTx = parseBitcoinTx(rawTXx);

Snippet 4.3: Definition of subvalidate

Impact Any transaction that cannot be parsed by the parseBitcoinTx function will therefore
not cause the validation to revert (see Bitcoin Transactions with Witnesses do not Parse
Correctly for valid transactions that cannot be parsed). This can cause incorrect or 0 data to be
used and returned rather than the actual data in the transaction. For cross-cats specifically, this
could allow an output to be marked as filled erroneously.

Recommendation parseBitcoinTx() should revert if the transaction is invalid, or
subValidate() should check the value of the flag before returning it.

Developer Response The developers have implemented the recommendation.

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

Bitcoin%20Transactions%20with%20Witnesses%20do%20not%20Parse%20C%2012a105edf1db807c90a5c2534f049236.md
Bitcoin%20Transactions%20with%20Witnesses%20do%20not%20Parse%20C%2012a105edf1db807c90a5c2534f049236.md

O W N OO U~ W N

e el
w N R ©

14
15
16
17
18
19
20
21
22
23
24

4.1 Detailed Description of Issues

4.1.3 V-BPR-VUL-003: Prism has Weaker Safety Guarantees than Bitcoin

Medium c98c013
Logic Error Partially Fixed
BtcPrism.sol
submitBlock

N/A

The Bitcoin Prism project allows anyone to submit new blocks for inclusion in the light-client
chain. To prevent potential tampering, the project allows users to submit a new chain of blocks
that can overwrite the previous chain where the "heaviest" chain is kept. Any blocks can
be overwritten during this process, meaning a retarget can be included in the chain. This
is important because the prism does not precisely model a re-target by calculating the new
difficulty. Instead, they enforce that the new target cannot be more than 4 times easier than the
current target as seen below.

function submitBlock(uint256 blockHeight, bytes calldata blockHeader)
private
returns (uint256 numReorged)

{
// support once-every-2016-blocks retargeting
uint256 period = blockHeight / 2016;
if (blockHeight % 2016 == 0) {
// Bitcoin enforces a minimum difficulty of 25% of the previous
// difficulty. Doing the full calculation here does not necessarily
// add any security. We keep the heaviest chain, not the longest.
uint256 lastTarget = periodToTarget[period - 1]; // blockHeight > 2016 =>
blockHeight / 2016 > 1 => fine.
// ignore difficulty update rules on testnet.
// Bitcoin testnet has some clown hacks regarding difficulty, see
// https://blog.lopp.net/the-block-storms-of-bitcoins-testnet/
if (!isTestnet) {
if (target >> 2 >= lastTarget) revert DifficultyRetargetLT25();
}
periodToTarget[period] = target;
}
}

Snippet 4.4: Snippet from SubmitBlock

Impact As a parallel chain with a lesser difficulty can be accepted, the security guarantees
provided from Prism diverge from Bitcoin. This is because in-between bitcoin blocks, it is
possible for a user to check-in additional progress made on the less difficult chain. For example,
between a retarget block and the first block after the retarget, someone can add blocks with
1/4 the difficulty. Similarly, between the first and second block after a re-target, a chain of 5 or
more blocks can be added with 1/4 the difficulty. While the probability of any chain completely

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

11

12

4 Vulnerability Report

taking over the light client remains extremely low (as doing so would require 1000 blocks on
the new chain), the likelihood of small deviations around re-target nodes is increased.

In cross-cats, if a user could cause even a temporary deviation, they could permanently prove
that an order has been filled. There would be little risk for such a filler if they were to do so as
they could initiate, prove, and fulfill a group of orders all within the same transaction.

Recommendation We would recommend considering one of the following:

1. Increase the number of confirmations needed around retarget boundaries.
2. Implement the same retargeting logic that bitcoin uses.

Developer Response The developers have updated their documentation to recommend
multiple confirmations for all orders and have noted that the system may not be safe with one
confirmation. This should mitigate the issue in practice but users can be impacted if they don’t
use the Ul or ignore the warnings.

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

14
15
16
17
18
19
20
21
22
23
24

4.1 Detailed Description of Issues

4.1.4 V-BPR-VUL-004: Single Heavy Block can DoS Prism

Severity EFgY c98c043
#8478 Denial of Service Fixed

File(s) BtcPrism.sol
Location(s) submitBlock
Confirmed Fix At alfoff3

The Bitcoin Prism project allows anyone to submit new blocks for inclusion in the light-client
chain. To prevent a user from forcing the tracked network to diverge from the bitcoin network,
the prism project allows previous blocks to be overwritten where the "heaviest" chain is kept.
There are some restrictions, however as one can only overwrite the previous 1000 blocks. There
are no restrictions on the 1000 blocks that can be overwritten, however, meaning that this can
occur while the chain is retargeting. Notably, on Bitcoin retargeting restricts the new target to
be within a factor of 4 of the previous target (i.e. can only increase by 4x and reduce by 25%).
While Prism enforces the upper bound, the lower bound is not enforced as shown below.

function submitBlock(uint256 blockHeight, bytes calldata blockHeader)
private
returns (uint256 numReorged)

{
// support once-every-2016-blocks retargeting
uint256 period = blockHeight / 2016;
if (blockHeight % 2016 == 0) {
// Bitcoin enforces a minimum difficulty of 25% of the previous
// difficulty. Doing the full calculation here does not necessarily
// add any security. We keep the heaviest chain, not the longest.
uint256 lastTarget = periodToTarget([period - 1]; // blockHeight > 2016 =>
blockHeight / 2016 > 1 => fine.
// ignore difficulty update rules on testnet.
// Bitcoin testnet has some clown hacks regarding difficulty, see
// https://blog.lopp.net/the-block-storms-of-bitcoins-testnet/
if (!isTestnet) {
if (target >> 2 >= lastTarget) revert DifficultyRetargetLT25();
}
periodToTarget[period] = target;
}
}

Snippet 4.5: Snippet from submitBlock

Impact Since the heaviest chain will be kept, if someone can submit a block that is 1000 times
more difficult than the actual difficulty within 1000 blocks of a retarget, that single block will
be considered the heaviest and cannot possibly be a valid bitcoin block. This would effectively
break the light client as the bitcoin chain could not overwrite this block.

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

13

14 4 Vulnerability Report

Recommendation Enforce the restriction on the maximum difficulty increase as well as the
minimum difficulty increase.

Developer Response The developers have implemented the above recommendation.

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

© 0 N O U~ W N

N N N N N NN P2 B B 2 B 2 2 B @2 B2
o U A W N P © O 0 N O U B W N R ©

4.1 Detailed Description of Issues

4.1.5 V-BPR-VUL-005: Missing Transaction Merkle Tree Safety Checks

Severity EFgY c98c043

g8yl Data Validation Partially Fixed
File(s) BtcProof.sol

Location(s) getTxMerkleRoot

Confirmed Fix At N/A

A bitcoin block contains a merkle tree root to succinctly summarize the sequence of transactions

executed within the block. To prove that a transaction has been executed, one therefore needs

to provide a valid block and a proof that the transaction is included in the block’s transaction
merkle tree root. Part of the code to validate a merkle tree proof, which we noted is missing

some protections implemented in other SPV implementations, is shown below. Such checks

include:

1. Checking that the txIndex is 0 after the loop terminates to ensure the siblings refers to
the correct index.

2. Checking if any of the internal nodes correspond to hashes of known transactions. This is
to prevent against attacks such as the one described here.

function getTxMerkleRoot (

) internal pure returns (bytes32) {

-

bytes32 txId,
uint256 txIndex,
bytes calldata siblings

unchecked {

bytes32 ret = bytes32(Endian.reverse256(uint256(txId)));
uint256 len = siblings.length / 32;
for (uint256 i = 0; 1 < len; ++i) {
bytes32 s = bytes32(
Endian. reverse256(
uint256 (bytes32(siblings[i * 32:(i + 1) = 321)) // i is small.

)
ret = doubleSha(
txIndex & 1 ==
? abi.encodePacked(ret, s)
: abi.encodePacked(s, ret)
);
txIndex = txIndex >> 1;
b

return ret;

Snippet 4.6: Definition of getTxMerkleRoot

Impact The above checks are common precautions used to ensure the user is indexing the

merkle tree correctly and is referring to real data.

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

15

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/attachments/20180609/9f4f5b1f/attachment-0001.pdf

16 4 Vulnerability Report

Recommendation We would recommend implementing similar checks to those described
above.

Developer Response The developers have fixed the first part of this issue. They have also
placed limits on the size of trades in the short term to reduce the economic incentive of such an
attack. They plan to address the second issue in the future since it requires more substantial
changes.

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

N o o A WN =

4.1 Detailed Description of Issues

4.1.6 V-BPR-VUL-006: Block Hash of 0 can Always be Proven

Warning 98:043
Data Validation Won't Fix

BtcPrism.sol, BtcTxVerifier.sol, BitcoinOracle.sol
Multiple

N/A

The Bitcoin Prism light client allows users to retrieve the block hash associated with a given
block number as long as the requested hash is less than or equal to the latest block tracked by
prism. Notably, however, if the requested block number is too old, then 0 will be returned rather
than the requested hash.

function getBlockHash(uint256 blockNum) public view returns (bytes32) {
require(blockNum <= latestBlockHeight, "Block not yet submitted");
if (blockNum < latestBlockHeight - MAX_ALLOWED_REORG) {
return 0;
}
return blockHashes[blockNum % NUM_BLOCKS];
}

Snippet 4.7: Definition of getBlockHash

Impact If the return value of getBlockHash is not checked to see if the output is 0, a user can
always prove that a block with the zero hash is included in the blockchain. This potentially
allows incorrect information to be proven. Note this holds for the BtcTxverifier and
BitcoinOracle.

Recommendation Consider reverting if the returned hash is 0.

Developer Response The developers have indicated that they do not plan to fix this issue.

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

17

18

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

4 Vulnerability Report

4.1.7 V-BPR-VUL-007: Re-organized Blocks are Double Counted

Syl Warning c98c043
#h4J0 Logic Error Fixed

File(s) BtcPrism.sol
Location(s) submit
Confirmed Fix At 54add79

When a user submits new blocks for inclusion in Prism, some blocks can be overwritten if the
new chain is heavier. In this case, the number of re-organized or overwritten blocks will be
reported to the user. The calculation that counts the number of re-organized blocks, however,
appears to be incorrect as the number of reorganized blocks is not counted. Rather, as shown
below, for each re-organized block the distance between the block and the old latest block is
accumulated. If the new chain contains multiple blocks, some re-organized blocks will therefore
be double-counted.

function submit(uint256 blockHeight, bytes calldata blockHeaders) public {
for (uint256 i = 0; i < numHeaders; ++i) {
// unchecked: This might overflow if numheaders = type(uint256).max - type(
uint256).max/2016. But that is such a massive number
// that it is not going to overflow.
uint256 blockNum = blockHeight + i;
nReorg += submitBlock(blockNum, blockHeaders[80 * 1:80 x (i + 1)]); //
unchecked: Overflows if blockHeaders.length == type(uint256).max.
}
if (nReorg > 0) {
emit Reorg(nReorg, oldTip, newTip);
}
}
function submitBlock(uint256 blockHeight, bytes calldata blockHeader)

private
returns (uint256 numReorged)

-~

// optimistically save the block hash

// we'll revert if the header turns out to be invalid

if (blockHeight <= latestBlockHeight) {
// if we’re overwriting a non-zero block hash, that block is reorged
numReorged = latestBlockHeight - blockHeight;

-

Snippet 4.8: Logic showing how the number of re-organized blocks is computed

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

4.1 Detailed Description of Issues

Impact The number of re-organized blocks reported to users may be inaccurate.

Recommendation We believe that rather than accumulating the return value from
submitBlock, the maximum value should be selected.

Developer Response The developers have simplified the logic by computing the number of
re-organized blocks using the difference between the chain heights.

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

19

20

O 0w N o U~ W N P

e e e e i e e
O 00 N o U1 A W N H O

v A W N =

© 0 N O

4 Vulnerability Report

4.1.8 V-BPR-VUL-008: Bitcoin Work Calculation is Incorrect

Warning 98043
Logic Error Fixed
File(s) BtcPrism.sol

getWorkInPeriod

Confirmed Fix At cdb5905

The prism project allows users to submit an alternative chain of blocks which can overwrite the
current chain if it "heavier." The heaviness of the block is determined by calculating the amount
of work that was performed in each chain.

-~

-

function getWorkInPeriod(uint256 period, uint256 height)

private
view
returns (uint256)

unchecked {

uint256 target = periodToTarget[period];
uint256 workPerBlock = (2%%256 - 1) / target;

// unchecked: period is not raw from input but parsed as newHeight/2016.
// as such, we can multiply it by 2016.

uint256 numBlocks = height - (period * 2016) + 1;

require(numBlocks >= 1 && numBlocks <= 2016);

return numBlocks * workPerBlock;

Snippet 4.9: Definition from getWorkInPeriod

Prism calculates the work using the getWorkInPeriod function shown above, but this does not

match the definition of work used by bitcoin, which is shown below.

arith_uint256 GetBlockProof(const CBlockIndex& block)

{

—

// We need to compute 2**256 / (bnTarget+l), but we can’t represent 2xx256

// as it’'s too large for an arith_uint256. However, as 2%x256 is at least as
large

// as bnTarget+l, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+l)) + 1,
// or ~bnTarget / (bnTarget+1) + 1.

return (~bnTarget / (bnTarget + 1)) + 1;

Snippet 4.10: Work calculation used by Bitcoin

Recommendation While it is unlikely that this will have a significant impact when deter-

mining the heaviness of a chain, we would recommend using Bitcoin’s formula to avoid any
discrepencies.

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

4.1 Detailed Description of Issues 21

Developer Response The developers have applied the above recommendation.

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

22 4 Vulnerability Report

4.1.9 V-BPR-VUL-009: Ordinal Transfer Verification is Restrictive

Severity @i c98c043

g4l Logic Error Acknowledged
File(s) BtcProof.sol

Location(s) validateOrdinalTransfer
Confirmed Fix At N/A

The Bitcoin Prism project includes functionality to validate the transfer of ordinals from one user
to another. It does so by allowing a user to specify the UTXO of the desired ordinal and the value
necessary to transfer the requested ordinals. The oracle then validates that the transaction’s first
input corresponds to the specified UTXO, the transaction’s first output has the expected script
and that the value of the first output meets or exceeds the input value. Note that this works
because ordinals are transferred in a first-in-first-out order and therefore if the value sent meets
or exceeds the requested value, the desired ordinals must be included. This validation method,
however, is restrictive as it essentially requires that a user transfer all of their ordinals with a
value less than the the desired ordinal.

1| function validateOrdinalTransfer(

2 bytes32 blockHash,

3 BtcTxProof calldata txProof,

4 uint256 txInId,

5 uint32 txInPrevTxIndex,

6 bytes calldata outputScript,

7 uint256 satoshisExpected

8|) internal pure returns (bool) {

9 // 1. Finally, validate raw transaction correctly transfers the ordinal(s).

10 // Parse transaction

11 BitcoinTx memory parsedTx = subValidate(blockHash, txProof);

12 BitcoinTxIn memory txInput = parsedTx.inputs[0];

13 // Check if correct input transaction is used.

14 if (txInId '= txInput.prevTxID) revert InvalidTxInHash(txInId, txInput.prevTxID);

15 // Check if correct index of that transaction is used.

16 if (txInPrevTxIndex != txInput.prevTxIndex) revert InvalidTxInIndex(
txInPrevTxIndex, txInput.prevTxIndex);

17

18 BitcoinTxQut memory txo = parsedTx.outputs[0];

19 // if the length are less than 32, then use bytes32 to compare.

20 if (!compareScriptsCM(outputScript, txo.script)) revert ScriptMismatch(
outputScript, txo.script);

21

22 // We allow for sending more because of the dust limit which may cause problems.

23 if (txo.valueSats < satoshisExpected) revert AmountMismatch(txo.valueSats,
satoshisExpected);

24

25 // We've verified that blockHash contains a transaction with correct script

26 // that sends at least satoshisExpected to the given hash.

27 return true;

28}

Snippet 4.11: Definition of validateOrdinalTransfer

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

4.1 Detailed Description of Issues

Impact Ordinal transfers are often split so that the user can retain ownership of ordinals that
should not be included in the transfer. They cannot do so with the above API unless they use
multiple transactions.

Recommendation Consider expanding on this API so that users can more accurately transfer
specific ordinals

Developer Response The developers have acknowledged this issue.

Veridise Audit Report: Bitcoin Prism © 2024 Veridise Inc.

23

24 4 Vulnerability Report

© 2024 Veridise Inc. Veridise Audit Report: Bitcoin Prism

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Security Assessment Goals and Scope
	Security Assessment Goals

	Security Assessment Goals
	Security Assessment Methodology & Scope

	Security Assessment Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-BPR-VUL-001: Incorrect Blocks May be Erased During a Reorg
	V-BPR-VUL-002: BitcoinTx not Properly Validated to be Legitimate
	V-BPR-VUL-003: Prism has Weaker Safety Guarantees than Bitcoin
	V-BPR-VUL-004: Single Heavy Block can DoS Prism
	V-BPR-VUL-005: Missing Transaction Merkle Tree Safety Checks
	V-BPR-VUL-006: Block Hash of 0 can Always be Proven
	V-BPR-VUL-007: Re-organized Blocks are Double Counted
	V-BPR-VUL-008: Bitcoin Work Calculation is Incorrect
	V-BPR-VUL-009: Ordinal Transfer Verification is Restrictive

